Risk Estimation on High Frequency Financial Data Empirical Analysis of the DAX 30 /

By studying the ability of the Normal Tempered Stable (NTS) model to fit the statistical features of intraday data at a 5 min sampling frequency, Florian Jacobs extends the research on high frequency data as well as the appliance of tempered stable models. He examines the DAX30 returns using ARMA-GA...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jacob, Florian (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2015.
Σειρά:BestMasters
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02814nam a22005175i 4500
001 978-3-658-09389-1
003 DE-He213
005 20151106191509.0
007 cr nn 008mamaa
008 150328s2015 gw | s |||| 0|eng d
020 |a 9783658093891  |9 978-3-658-09389-1 
024 7 |a 10.1007/978-3-658-09389-1  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Jacob, Florian.  |e author. 
245 1 0 |a Risk Estimation on High Frequency Financial Data  |h [electronic resource] :  |b Empirical Analysis of the DAX 30 /  |c by Florian Jacob. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2015. 
300 |a XI, 70 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters 
505 0 |a Multivariate Standard Normal Tempered Stable Distribution -- FIGARCH -- High Frequency Data and Risk Management. 
520 |a By studying the ability of the Normal Tempered Stable (NTS) model to fit the statistical features of intraday data at a 5 min sampling frequency, Florian Jacobs extends the research on high frequency data as well as the appliance of tempered stable models. He examines the DAX30 returns using ARMA-GARCH NTS, ARMA-GARCH MNTS (Multivariate Normal Tempered Stable) and ARMA-FIGARCH (Fractionally Integrated GARCH) NTS. The models will be benchmarked through their goodness of fit and their VaR and AVaR, as well as in an historical Backtesting. Contents Multivariate Standard Normal Tempered Stable Distribution FIGARCH High Frequency Data and Risk Management Target Groups Researchers and students in the field of finance Practitioners in this area The Author Florian Jacob obtained his Master’s Degree in Business Engineering from the Karlsruhe Institute of Technology focusing on the application of tempered stable distributions on financial data and financial engineering. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Computer mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658093884 
830 0 |a BestMasters 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-09389-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)