The Value of Social Media for Predicting Stock Returns Preconditions, Instruments and Performance Analysis /

Michael Nofer examines whether and to what extent Social Media can be used to predict stock returns. Market-relevant information is available on various platforms on the Internet, which largely consist of user generated content. For instance, emotions can be extracted in order to identify the invest...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nofer, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03165nam a22004815i 4500
001 978-3-658-09508-6
003 DE-He213
005 20151204151413.0
007 cr nn 008mamaa
008 150421s2015 gw | s |||| 0|eng d
020 |a 9783658095086  |9 978-3-658-09508-6 
024 7 |a 10.1007/978-3-658-09508-6  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Nofer, Michael.  |e author. 
245 1 4 |a The Value of Social Media for Predicting Stock Returns  |h [electronic resource] :  |b Preconditions, Instruments and Performance Analysis /  |c by Michael Nofer. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2015. 
300 |a XVII, 128 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Market Anomalies on Two-Sided Auction Platforms -- Are Crowds on the Internet Wiser than Experts? – The Case of a Stock Prediction Community -- Using Twitter to Predict the Stock Market: Where is the Mood Effect? -- The Economic Impact of Privacy Violations and Security Breaches – A Laboratory Experiment -- Literature. 
520 |a Michael Nofer examines whether and to what extent Social Media can be used to predict stock returns. Market-relevant information is available on various platforms on the Internet, which largely consist of user generated content. For instance, emotions can be extracted in order to identify the investors' risk appetite and in turn the willingness to invest in stocks. Discussion forums also provide an opportunity to identify opinions on certain companies. Taking Social Media platforms as examples, the author examines the forecasting quality of user generated content on the Internet. Contents Market Anomalies on Two-Sided Auction Platforms Are Crowds on the Internet Wiser than Experts? – The Case of a Stock Prediction Community Using Twitter to Predict the Stock Market: Where is the Mood Effect? The Economic Impact of Privacy Violations and Security Breaches – A Laboratory Experiment Target Groups Scientists and students in the field of IT, finance and business Private investors, institutional investors About the Author Michael Nofer wrote his dissertation at the Chair of Information Systems | Electronic Markets at TU Darmstadt, Germany.  . 
650 0 |a Computer science. 
650 0 |a Information technology. 
650 0 |a Business  |x Data processing. 
650 0 |a Data mining. 
650 0 |a Macroeconomics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Macroeconomics/Monetary Economics//Financial Economics. 
650 2 4 |a IT in Business. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658095079 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-09508-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)