Automatic SIMD Vectorization of SSA-based Control Flow Graphs

Ralf Karrenberg presents Whole-Function Vectorization (WFV), an approach that allows a compiler to automatically create code that exploits data-parallelism using SIMD instructions. Data-parallel applications such as particle simulations, stock option price estimation, or video decoding require the s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Karrenberg, Ralf (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03261nam a22004935i 4500
001 978-3-658-10113-8
003 DE-He213
005 20151204154224.0
007 cr nn 008mamaa
008 150612s2015 gw | s |||| 0|eng d
020 |a 9783658101138  |9 978-3-658-10113-8 
024 7 |a 10.1007/978-3-658-10113-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.7-76.73 
050 4 |a QA76.76.C65 
072 7 |a UMX  |2 bicssc 
072 7 |a UMC  |2 bicssc 
072 7 |a COM051010  |2 bisacsh 
072 7 |a COM010000  |2 bisacsh 
082 0 4 |a 005.13  |2 23 
100 1 |a Karrenberg, Ralf.  |e author. 
245 1 0 |a Automatic SIMD Vectorization of SSA-based Control Flow Graphs  |h [electronic resource] /  |c by Ralf Karrenberg. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2015. 
300 |a XVI, 187 p. 41 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Ralf Karrenberg presents Whole-Function Vectorization (WFV), an approach that allows a compiler to automatically create code that exploits data-parallelism using SIMD instructions. Data-parallel applications such as particle simulations, stock option price estimation, or video decoding require the same computations to be performed on huge amounts of data. Without WFV, one processor core executes a single instance of a data-parallel function. WFV transforms the function to execute multiple instances at once using SIMD instructions. The author describes an advanced WFV algorithm that includes a variety of analyses and code generation techniques. He shows that this approach improves the performance of the generated code in a variety of use cases. Contents Introduction, Foundations & Terminology, Related Work SIMD Property Analyses Whole-Function Vectorization Dynamic Code Variants, Evaluation, Conclusion, Outlook Target Groups Computer science researchers and students working in data-parallel computing Software and compiler engineers in the fields high-performance computing and compiler construction About the Author Ralf Karrenberg received his PhD in computer science at Saarland University in 2015. His seminal research on compilation techniques for SIMD architectures found wide recognition in both academia and the CPU and GPU industry. Currently, he is working for NVIDIA in Berlin. Prior to that, he contributed to research and development for visual effects in blockbuster movies at Weta Digital, New Zealand. 
650 0 |a Computer science. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Computer graphics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
650 2 4 |a Computer Graphics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658101121 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-10113-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)