A Polynomial Translation of Mobile Ambients into Safe Petri Nets Understanding a Calculus of Hierarchical Protection Domains /

The master thesis of Susanne Göbel generates the deep understanding of the Mobile Ambient (MA) calculus that is necessary to use it as a modeling language. Instead of calculus terms a much more convenient representation via MA trees naturally maps to the application area of networks where processes...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Göbel, Susanne (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2016.
Έκδοση:1st ed. 2016.
Σειρά:BestMasters
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03639nam a22005415i 4500
001 978-3-658-11765-8
003 DE-He213
005 20160123142445.0
007 cr nn 008mamaa
008 160122s2016 gw | s |||| 0|eng d
020 |a 9783658117658  |9 978-3-658-11765-8 
024 7 |a 10.1007/978-3-658-11765-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.L63 
050 4 |a QA76.5913 
050 4 |a QA76.63 
072 7 |a UM  |2 bicssc 
072 7 |a UYF  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
072 7 |a COM036000  |2 bisacsh 
082 0 4 |a 005.1015113  |2 23 
100 1 |a Göbel, Susanne.  |e author. 
245 1 2 |a A Polynomial Translation of Mobile Ambients into Safe Petri Nets  |h [electronic resource] :  |b Understanding a Calculus of Hierarchical Protection Domains /  |c by Susanne Göbel. 
250 |a 1st ed. 2016. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2016. 
300 |a IX, 66 p. 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters 
505 0 |a Translating Mobile Ambient (MA) Processes into Safe Petri Nets - The Idea -- Managing Names in the Petri Net -- Translating Mobile Ambient Processes into Safe Petri Nets – Complete Construction -- From MA to rMA -- From rMA to MA-PN -- Polynomial Construction Using a Substitution Net. . 
520 |a The master thesis of Susanne Göbel generates the deep understanding of the Mobile Ambient (MA) calculus that is necessary to use it as a modeling language. Instead of calculus terms a much more convenient representation via MA trees naturally maps to the application area of networks where processes pass hierarchical protection domains like firewalls. The work analyses MA’s function principles and derives a translation into Safe Petri nets. It extends to arbitrary MA processes but finiteness of the net and therefore decidability of reachability is only guaranteed for bounded processes. The construction is polynomial in process size and bounds so that reachability analysis is only PSPACE-complete. Contents Translating Mobile Ambient (MA) Processes into Safe Petri Nets – The Idea Managing Names in the Petri Net Translating Mobile Ambient Processes into Safe Petri Nets – Complete Construction From MA to rMA From rMA to MA-PN Polynomial Construction Using a Substitution Net Target Groups Students of Theoretical Computer Science and Verification Researchers in Verification of Process Calculi The Author Susanne Göbel currently works towards her PhD in Computer Science a t the University of Kaiserslautern. She engages in various research projects to help people understand computational frameworks of theory and practice. While devoting most of her free time to her family she still finds time to work as women councilor and on improving studying and working conditions in the faculty. 
650 0 |a Computer science. 
650 0 |a Computer organization. 
650 0 |a Algorithms. 
650 0 |a Computer logic. 
650 1 4 |a Computer Science. 
650 2 4 |a Logics and Meanings of Programs. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Computer Systems Organization and Communication Networks. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658117641 
830 0 |a BestMasters 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-11765-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)