Time-Optimal Trajectory Planning for Redundant Robots Joint Space Decomposition for Redundancy Resolution in Non-Linear Optimization /

This master’s thesis presents a novel approach to finding trajectories with minimal end time for kinematically redundant manipulators. Emphasis is given to a general applicability of the developed method to industrial tasks such as gluing or welding. Minimum-time trajectories may yield economic adva...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Reiter, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2016.
Έκδοση:1st ed. 2016.
Σειρά:BestMasters
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03544nam a22005775i 4500
001 978-3-658-12701-5
003 DE-He213
005 20160313021051.0
007 cr nn 008mamaa
008 160311s2016 gw | s |||| 0|eng d
020 |a 9783658127015  |9 978-3-658-12701-5 
024 7 |a 10.1007/978-3-658-12701-5  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TJFD  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TEC037000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Reiter, Alexander.  |e author. 
245 1 0 |a Time-Optimal Trajectory Planning for Redundant Robots  |h [electronic resource] :  |b Joint Space Decomposition for Redundancy Resolution in Non-Linear Optimization /  |c by Alexander Reiter. 
250 |a 1st ed. 2016. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2016. 
300 |a XV, 90 p. 35 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters 
505 0 |a NURBS Curves -- Modeling: Kinematics and Dynamics of Redundant Robots -- Approaches to Minimum-Time Trajectory Planning -- Joint Space Decomposition Approach -- Examples for Applications of Robots. 
520 |a This master’s thesis presents a novel approach to finding trajectories with minimal end time for kinematically redundant manipulators. Emphasis is given to a general applicability of the developed method to industrial tasks such as gluing or welding. Minimum-time trajectories may yield economic advantages as a shorter trajectory duration results in a lower task cycle time. Whereas kinematically redundant manipulators possess increased dexterity, compared to conventional non-redundant manipulators, their inverse kinematics is not unique and requires further treatment. In this work a joint space decomposition approach is introduced that takes advantage of the closed form inverse kinematics solution of non-redundant robots. Kinematic redundancy can be fully exploited to achieve minimum-time trajectories for prescribed end-effector paths. Contents NURBS Curves Modeling: Kinematics and Dynamics of Redundant Robots Approaches to Minimum-Time Trajectory Planning Joint Space Decomposition Approach Examples for Applications of Robots Target Groups Lecturers and Students of Robotics and Automation Industrial Developers of Trajectory Planning Algorithms The Author Alexander Reiter is a Senior Scientist at the Institute of Robotics of the Johannes Kepler University Linz in Austria. His major fields of research are kinematics, dynamics, and trajectory planning for kinematically redundant serial robots. 
650 0 |a Engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Engineering. 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658127008 
830 0 |a BestMasters 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-12701-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)