Predicting the Lineage Choice of Hematopoietic Stem Cells A Novel Approach Using Deep Neural Networks /

Manuel Kroiss examines the differentiation of hematopoietic stem cells using machine learning methods. This work is based on experiments focusing on the lineage choice of CMPs, the progenitors of HSCs, which either become MEP or GMP cells. The author presents a novel approach to distinguish MEP from...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kroiss, Manuel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2016.
Σειρά:BestMasters
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03236nam a22004815i 4500
001 978-3-658-12879-1
003 DE-He213
005 20160512133834.0
007 cr nn 008mamaa
008 160512s2016 gw | s |||| 0|eng d
020 |a 9783658128791  |9 978-3-658-12879-1 
024 7 |a 10.1007/978-3-658-12879-1  |2 doi 
040 |d GrThAP 
050 4 |a QD415-436 
072 7 |a PNN  |2 bicssc 
072 7 |a SCI013040  |2 bisacsh 
082 0 4 |a 547  |2 23 
100 1 |a Kroiss, Manuel.  |e author. 
245 1 0 |a Predicting the Lineage Choice of Hematopoietic Stem Cells  |h [electronic resource] :  |b A Novel Approach Using Deep Neural Networks /  |c by Manuel Kroiss. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2016. 
300 |a XV, 68 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters 
505 0 |a Machine Learning – Deep Learning -- Training Neural Networks -- Recurrent Neural Networks -- Stem Cell Classification Using Microscopy Images. 
520 |a Manuel Kroiss examines the differentiation of hematopoietic stem cells using machine learning methods. This work is based on experiments focusing on the lineage choice of CMPs, the progenitors of HSCs, which either become MEP or GMP cells. The author presents a novel approach to distinguish MEP from GMP cells using machine learning on morphology features extracted from bright field images. He tests the performance of different models and focuses on Recurrent Neural Networks with the latest advances from the field of deep learning. Two different improvements to recurrent networks were tested: Long Short Term Memory (LSTM) cells that are able to remember information over long periods of time, and dropout regularization to prevent overfitting. With his method, Manuel Kroiss considerably outperforms standard machine learning methods without time information like Random Forests and Support Vector Machines. Contents Machine Learning – Deep Learning Training Neural Networks Recurrent Neural Networks Stem Cell Classification Using Microscopy Images Target Groups Teachers and students in the field of computer science and applied machine learning Executives and specialists in the field of neural networks and computational biology About the Author After finishing his MSc in Bioinformatics, Manuel Kroiss moved to London to work for a computer science company. In his work, the author is focusing on algorithmic problem solving while still remaining interested in applied machine learning. 
650 0 |a Chemistry. 
650 0 |a Organic chemistry. 
650 0 |a Chemical engineering. 
650 0 |a Catalysis. 
650 1 4 |a Chemistry. 
650 2 4 |a Organic Chemistry. 
650 2 4 |a Catalysis. 
650 2 4 |a Industrial Chemistry/Chemical Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658128784 
830 0 |a BestMasters 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-12879-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)