Analysis of Single-Cell Data ODE Constrained Mixture Modeling and Approximate Bayesian Computation /

Carolin Loos introduces two novel approaches for the analysis of single-cell data. Both approaches can be used to study cellular heterogeneity and therefore advance a holistic understanding of biological processes. The first method, ODE constrained mixture modeling, enables the identification of sub...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Loos, Carolin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2016.
Έκδοση:1st ed. 2016.
Σειρά:BestMasters
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03067nam a22005175i 4500
001 978-3-658-13234-7
003 DE-He213
005 20160317142404.0
007 cr nn 008mamaa
008 160317s2016 gw | s |||| 0|eng d
020 |a 9783658132347  |9 978-3-658-13234-7 
024 7 |a 10.1007/978-3-658-13234-7  |2 doi 
040 |d GrThAP 
050 4 |a QH323.5 
050 4 |a QH324.2-324.25 
072 7 |a PDE  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Loos, Carolin.  |e author. 
245 1 0 |a Analysis of Single-Cell Data  |h [electronic resource] :  |b ODE Constrained Mixture Modeling and Approximate Bayesian Computation /  |c by Carolin Loos. 
250 |a 1st ed. 2016. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2016. 
300 |a XXI, 92 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters 
505 0 |a Modeling and Parameter Estimation for Single-Cell Data -- ODE Constrained Mixture Modeling for Multivariate Data -- Approximate Bayesian Computation Using Multivariate Statistics. 
520 |a Carolin Loos introduces two novel approaches for the analysis of single-cell data. Both approaches can be used to study cellular heterogeneity and therefore advance a holistic understanding of biological processes. The first method, ODE constrained mixture modeling, enables the identification of subpopulation structures and sources of variability in single-cell snapshot data. The second method estimates parameters of single-cell time-lapse data using approximate Bayesian computation and is able to exploit the temporal cross-correlation of the data as well as lineage information. Contents Modeling and Parameter Estimation for Single-Cell Data ODE Constrained Mixture Modeling for Multivariate Data Approximate Bayesian Computation Using Multivariate Statistics Target Groups Researchers and students in the fields of (bio-)mathematics, statistics, bioinformatics System biologists, biostatisticians, bioinformaticians The Author Carolin Loos is currently doing her PhD at the Institute of Computational Biology at the Helmholtz Zentrum München. She is member of the junior research group „Data-driven Computational Modeling“. 
650 0 |a Mathematics. 
650 0 |a Bioinformatics. 
650 0 |a Computational biology. 
650 0 |a Computer mathematics. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computer Appl. in Life Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658132330 
830 0 |a BestMasters 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-13234-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)