Solving Network Design Problems via Decomposition, Aggregation and Approximation

Andreas Bärmann develops novel approaches for the solution of network design problems as they arise in various contexts of applied optimization. At the example of an optimal expansion of the German railway network until 2030, the author derives a tailor-made decomposition technique for multi-period...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bärmann, Andreas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03308nam a22004695i 4500
001 978-3-658-13913-1
003 DE-He213
005 20160602152459.0
007 cr nn 008mamaa
008 160602s2016 gw | s |||| 0|eng d
020 |a 9783658139131  |9 978-3-658-13913-1 
024 7 |a 10.1007/978-3-658-13913-1  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Bärmann, Andreas.  |e author. 
245 1 0 |a Solving Network Design Problems via Decomposition, Aggregation and Approximation  |h [electronic resource] /  |c by Andreas Bärmann. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2016. 
300 |a XV, 203 p. 32 illus., 28 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Decomposition for Multi-Period Network Design -- Solving Network Design Problems via Aggregation -- Approximate Second-Order Cone Robust Optimization. 
520 |a Andreas Bärmann develops novel approaches for the solution of network design problems as they arise in various contexts of applied optimization. At the example of an optimal expansion of the German railway network until 2030, the author derives a tailor-made decomposition technique for multi-period network design problems. Next, he develops a general framework for the solution of network design problems via aggregation of the underlying graph structure. This approach is shown to save much computation time as compared to standard techniques. Finally, the author devises a modelling framework for the approximation of the robust counterpart under ellipsoidal uncertainty, an often-studied case in the literature. Each of these three approaches opens up a fascinating branch of research which promises a better theoretical understanding of the problem and an increasing range of solvable application settings at the same time. Contents Decomposition for Multi-Period Network Design Solving Network Design Problems via Aggregation Approximate Second-Order Cone Robust Optimization Target Groups Researchers, teachers and students in mathematical optimization and operations research Network planners in the field of logistics and beyond < About the Author Dr. Andreas Bärmann is currently working as a postdoctoral researcher at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) at the chair of Economics, Discrete Optimization and Mathematics. His research is focussed on mathematical optimization, especially the optimization of logistic processes. 
650 0 |a Mathematics. 
650 0 |a Business logistics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Logistics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658139124 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-13913-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)