Machine Learning for Microbial Phenotype Prediction
This thesis presents a scalable, generic methodology for microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can...
Κύριος συγγραφέας: | Feldbauer, Roman (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Wiesbaden :
Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum,
2016.
|
Σειρά: | BestMasters
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Predicting Transcription Factor Complexes A Novel Approach to Data Integration in Systems Biology /
ανά: Will, Thorsten
Έκδοση: (2015) -
Numerical Methods for the Life Scientist Binding and Enzyme Kinetics Calculated with GNU Octave and MATLAB /
ανά: Prinz, Heino
Έκδοση: (2011) -
Biomechanics of the Gravid Human Uterus
ανά: Miftahof, Roustem N., κ.ά.
Έκδοση: (2011) -
Phenotypes and Genotypes The Search for Influential Genes /
ανά: Frommlet, Florian, κ.ά.
Έκδοση: (2016) -
Computational Electrostatics for Biological Applications Geometric and Numerical Approaches to the Description of Electrostatic Interaction Between Macromolecules /
Έκδοση: (2015)