Learning Dynamic Spatial Relations The Case of a Knowledge-based Endoscopic Camera Guidance Robot /

Andreas Bihlmaier describes a novel method to model dynamic spatial relations by machine learning techniques. The method is applied to the task of representing the tacit knowledge of a trained camera assistant in minimally-invasive surgery. The model is then used for intraoperative control of a robo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bihlmaier, Andreas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03472nam a22004815i 4500
001 978-3-658-14914-7
003 DE-He213
005 20160812150325.0
007 cr nn 008mamaa
008 160812s2016 gw | s |||| 0|eng d
020 |a 9783658149147  |9 978-3-658-14914-7 
024 7 |a 10.1007/978-3-658-14914-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Bihlmaier, Andreas.  |e author. 
245 1 0 |a Learning Dynamic Spatial Relations  |h [electronic resource] :  |b The Case of a Knowledge-based Endoscopic Camera Guidance Robot /  |c by Andreas Bihlmaier. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2016. 
300 |a XV, 267 p. 120 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Endoscope Robots and Automated Camera Guidance -- Knowledge-based Cognitive Systems -- Modular Research Platform for Robot-Assisted Surgery based on ROS -- Learning of Surgical Know-how by Models of Spatial Relations -- Intraoperative Camera Assistance -- Evaluation Study: TME in the Open Source Heidelberg Laparoscopic Phantom (OpenHELP). 
520 |a Andreas Bihlmaier describes a novel method to model dynamic spatial relations by machine learning techniques. The method is applied to the task of representing the tacit knowledge of a trained camera assistant in minimally-invasive surgery. The model is then used for intraoperative control of a robot that autonomously positions the endoscope. Furthermore, a modular robotics platform is described, which forms the basis for this knowledge-based assistance system. Promising results from a complex phantom study are presented. Contents Endoscope Robots and Automated Camera Guidance Knowledge-based Cognitive Systems Modular Research Platform for Robot-Assisted Surgery based on ROS Learning of Surgical Know-how by Models of Spatial Relations Intraoperative Camera Assistance Evaluation Study: TME in the Open Source Heidelberg Laparoscopic Phantom (OpenHELP) Target Groups Scientists and students in the field of robotics, surgical assistance systems, cognitive and knowledge-based systems Practitioners in companies selling manually controlled robots or motorized endoscope holders About the Author Andreas Bihlmaier is leader of the Cognitive Medical Technologies group in the Institute for Anthropomatics and Robotics – Intelligent Process Control and Robotics Lab (IAR-IPR) at the Karlsruhe Institute of Technology (KIT). His research focuses on cognitive surgical robotics for minimally-invasive surgery, as part of the SFB/Transregio 125 “Cognition-Guided Surgery”. 
650 0 |a Computer science. 
650 0 |a Minimally invasive surgery. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Minimally Invasive Surgery. 
650 2 4 |a Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658149130 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-14914-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)