Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data

Philipp Bergmeir works on the development and enhancement of data mining and machine learning methods with the aim of analysing automatically huge amounts of load spectrum data that are recorded for large hybrid electric vehicle fleets. In particular, he presents new approaches for uncovering and de...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bergmeir, Philipp (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03191nam a2200493 4500
001 978-3-658-20367-2
003 DE-He213
005 20191025201334.0
007 cr nn 008mamaa
008 171201s2018 gw | s |||| 0|eng d
020 |a 9783658203672  |9 978-3-658-20367-2 
024 7 |a 10.1007/978-3-658-20367-2  |2 doi 
040 |d GrThAP 
050 4 |a TL1-483 
072 7 |a TRC  |2 bicssc 
072 7 |a TEC009090  |2 bisacsh 
072 7 |a TRC  |2 thema 
072 7 |a TRCS  |2 thema 
082 0 4 |a 629.2  |2 23 
100 1 |a Bergmeir, Philipp.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data   |h [electronic resource] /  |c by Philipp Bergmeir. 
250 |a 1st ed. 2018. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2018. 
300 |a XXXII, 166 p. 34 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart,  |x 2567-0042 
520 |a Philipp Bergmeir works on the development and enhancement of data mining and machine learning methods with the aim of analysing automatically huge amounts of load spectrum data that are recorded for large hybrid electric vehicle fleets. In particular, he presents new approaches for uncovering and describing stress and usage patterns that are related to failures of selected components of the hybrid power-train. Contents Classifying Component Failures of a Vehicle Fleet Visualising Different Kinds of Vehicle Stress and Usage Identifying Usage and Stress Patterns in a Vehicle Fleet Target Groups  Students and scientists in the field of automotive engineering and data science Engineers in the automotive industry About the Author Philipp Bergmeir did a PhD in the doctoral program "Promotionskolleg HYBRID" at the Institute for Internal Combustion Engines and Automotive Engineering, University of Stuttgart, in cooperation with the Esslingen University of Applied Sciences and a well-known vehicle manufacturer. Currently, he is working as a data scientist in the automotive industry. 
650 0 |a Automotive engineering. 
650 0 |a Data mining. 
650 0 |a Pattern recognition. 
650 1 4 |a Automotive Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T17047 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658203665 
776 0 8 |i Printed edition:  |z 9783658203689 
830 0 |a Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart,  |x 2567-0042 
856 4 0 |u https://doi.org/10.1007/978-3-658-20367-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)