The Language of Self-Avoiding Walks Connective Constants of Quasi-Transitive Graphs /

The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be us...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lindorfer, Christian (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2018.
Έκδοση:1st ed. 2018.
Σειρά:BestMasters,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03101nam a2200493 4500
001 978-3-658-24764-5
003 DE-He213
005 20191027161226.0
007 cr nn 008mamaa
008 190107s2018 gw | s |||| 0|eng d
020 |a 9783658247645  |9 978-3-658-24764-5 
024 7 |a 10.1007/978-3-658-24764-5  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Lindorfer, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Language of Self-Avoiding Walks  |h [electronic resource] :  |b Connective Constants of Quasi-Transitive Graphs /  |c by Christian Lindorfer. 
250 |a 1st ed. 2018. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2018. 
300 |a XI, 65 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters,  |x 2625-3577 
505 0 |a Graph Height Functions and Bridges -- Self-Avoiding Walks on One-Dimensional Lattices -- The Algebraic Theory of Context-Free Languages -- The Language of Walks on Edge-Labelled Graphs. 
520 |a The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be used to calculate the connective constant of the graph. Christian Lindorfer discusses the methods in some examples, including the infinite ladder-graph and the sandwich of two regular infinite trees. Contents Graph Height Functions and Bridges Self-Avoiding Walks on One-Dimensional Lattices The Algebraic Theory of Context-Free Languages The Language of Walks on Edge-Labelled Graphs Target Groups Researchers and students in the fields of graph theory, formal language theory and combinatorics Experts in these areas The Author Christian Lindorfer wrote his master's thesis under the supervision of Prof. Dr. Wolfgang Woess at the Institute of Discrete Mathematics at Graz University of Technology, Austria. 
650 0 |a Algebra. 
650 0 |a Computer mathematics. 
650 0 |a Geometry. 
650 1 4 |a Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11000 
650 2 4 |a Computational Mathematics and Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M1400X 
650 2 4 |a Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21006 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658247638 
776 0 8 |i Printed edition:  |z 9783658247652 
830 0 |a BestMasters,  |x 2625-3577 
856 4 0 |u https://doi.org/10.1007/978-3-658-24764-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)