Fuel Tank Sloshing Simulation Using the Finite Volume Method

Matthäus Jäger examines the simulation of liquid-gas flow in fuel tank systems and its application to sloshing problems. The author focuses at first on the physical model and the assumptions necessary to derive the respective partial differential equations. The second step involves the cell-center...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jäger, Matthäus (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2019.
Έκδοση:1st ed. 2019.
Σειρά:BestMasters,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03503nam a2200505 4500
001 978-3-658-25228-1
003 DE-He213
005 20191027131259.0
007 cr nn 008mamaa
008 190128s2019 gw | s |||| 0|eng d
020 |a 9783658252281  |9 978-3-658-25228-1 
024 7 |a 10.1007/978-3-658-25228-1  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Jäger, Matthäus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fuel Tank Sloshing Simulation Using the Finite Volume Method  |h [electronic resource] /  |c by Matthäus Jäger. 
250 |a 1st ed. 2019. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2019. 
300 |a XI, 109 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters,  |x 2625-3577 
505 0 |a Developing a Fuel Tank with the Help of Computer Aided Engineering (CAE) -- Deriving a System of Equations for the Description of Sloshing Phenomena -- Showing the Usability of the Finite Volume Method -- Verifying the Results for Suitable Test Cases. 
520 |a Matthäus Jäger examines the simulation of liquid-gas flow in fuel tank systems and its application to sloshing problems. The author focuses at first on the physical model and the assumptions necessary to derive the respective partial differential equations. The second step involves the cell-centered finite volume method and its application to fluid dynamic problems with free surfaces using a volume of fluid approach. Finally, the application of the method for different use cases is presented followed by an introduction to the methodology for the interpretation of the results achieved. Contents Developing a Fuel Tank with the Help of Computer Aided Engineering (CAE) Deriving a System of Equations for the Description of Sloshing Phenomena Showing the Usability of the Finite Volume Method Verifying the Results for Suitable Test Cases Target Groups Lecturers and students from the fields of mechanical engineering, mathematics and physics Practitioners in the field of computational fluid dynamics The Author After successful completion of his master's studies at the Technical University of Graz, Austria, Matthäus Jäger is now working as an engineer in the field of computational fluid dynamics for an Austrian fuel tank system manufacturer. 
650 0 |a Computer mathematics. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computational Mathematics and Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M1400X 
650 2 4 |a Numerical and Computational Physics, Simulation.  |0 http://scigraph.springernature.com/things/product-market-codes/P19021 
650 2 4 |a Applications of Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M13003 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658252274 
776 0 8 |i Printed edition:  |z 9783658252298 
830 0 |a BestMasters,  |x 2625-3577 
856 4 0 |u https://doi.org/10.1007/978-3-658-25228-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)