Variational Regularization for Systems of Inverse Problems Tikhonov Regularization with Multiple Forward Operators /

Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in countless scientific fields. Richard Huber discusses a multi-parameter Tikhonov approach for systems of inverse problems in order to take advantage of their specific structure. Such an approach allows to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Huber, Richard (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2019.
Έκδοση:1st ed. 2019.
Σειρά:BestMasters,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03116nam a2200517 4500
001 978-3-658-25390-5
003 DE-He213
005 20191220130846.0
007 cr nn 008mamaa
008 190214s2019 gw | s |||| 0|eng d
020 |a 9783658253905  |9 978-3-658-25390-5 
024 7 |a 10.1007/978-3-658-25390-5  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Huber, Richard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Variational Regularization for Systems of Inverse Problems  |h [electronic resource] :  |b Tikhonov Regularization with Multiple Forward Operators /  |c by Richard Huber. 
250 |a 1st ed. 2019. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2019. 
300 |a IX, 136 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters,  |x 2625-3577 
505 0 |a General Tikhonov Regularization -- Specific Discrepancies -- Regularization Functionals -- Application to STEM Tomography Reconstruction. 
520 |a Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in countless scientific fields. Richard Huber discusses a multi-parameter Tikhonov approach for systems of inverse problems in order to take advantage of their specific structure. Such an approach allows to choose the regularization weights of each subproblem individually with respect to the corresponding noise levels and degrees of ill-posedness. Contents General Tikhonov Regularization Specific Discrepancies Regularization Functionals Application to STEM Tomography Reconstruction Target Groups Researchers and students in the field of mathematics Experts in the areas of mathematics, imaging, computer vision and nanotechnology The Author Richard Huber wrote his master's thesis under the supervision of Prof. Dr. Kristian Bredies at the Institute for Mathematics and Scientific Computing at Graz University, Austria. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Computer mathematics. 
650 1 4 |a Applications of Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M13003 
650 2 4 |a Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12007 
650 2 4 |a Computational Mathematics and Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M1400X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658253899 
776 0 8 |i Printed edition:  |z 9783658253912 
830 0 |a BestMasters,  |x 2625-3577 
856 4 0 |u https://doi.org/10.1007/978-3-658-25390-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)