High-Frequency Statistics with Asynchronous and Irregular Data

Ole Martin extends well-established techniques for the analysis of high-frequency data based on regular observations to the more general setting of asynchronous and irregular observations. Such methods are much needed in practice as real data usually comes in irregular form. In the theoretical part...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Martin, Ole (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03546nam a2200517 4500
001 978-3-658-28418-3
003 DE-He213
005 20191105151013.0
007 cr nn 008mamaa
008 191105s2019 gw | s |||| 0|eng d
020 |a 9783658284183  |9 978-3-658-28418-3 
024 7 |a 10.1007/978-3-658-28418-3  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Martin, Ole.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a High-Frequency Statistics with Asynchronous and Irregular Data  |h [electronic resource] /  |c by Ole Martin. 
250 |a 1st ed. 2019. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2019. 
300 |a XIII, 323 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics,  |x 2523-7926 
505 0 |a Laws of Large Numbers -- Random Observation Schemes -- Bootstrapping Asymptotic Laws -- Testing for (Common) Jumps. 
520 |a Ole Martin extends well-established techniques for the analysis of high-frequency data based on regular observations to the more general setting of asynchronous and irregular observations. Such methods are much needed in practice as real data usually comes in irregular form. In the theoretical part he develops laws of large numbers and central limit theorems as well as a new bootstrap procedure to assess asymptotic laws. The author then applies the theoretical results to estimate the quadratic covariation and to construct tests for the presence of common jumps. The simulation results show that in finite samples his methods despite the much more complex setting perform comparably well as methods based on regular data. Contents Laws of Large Numbers Random Observation Schemes Bootstrapping Asymptotic Laws Testing for (Common) Jumps Target Groups Scientists and students in the field of mathematical statistics, econometrics and financial mathematics Practitioners in the field of financial mathematics About the Author Dr. Ole Martin completed his PhD at the Kiel University (CAU), Germany. His research focuses on high-frequency statistics for semimartingales with the aim to develop methods based on irregularly observed data. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Economics, Mathematical . 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 http://scigraph.springernature.com/things/product-market-codes/S17010 
650 2 4 |a Quantitative Finance.  |0 http://scigraph.springernature.com/things/product-market-codes/M13062 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658284176 
776 0 8 |i Printed edition:  |z 9783658284190 
830 0 |a Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics,  |x 2523-7926 
856 4 0 |u https://doi.org/10.1007/978-3-658-28418-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)