Multivariate Data Analysis for Root Cause Analyses and Time-of-Flight Secondary Ion Mass Spectrometry

Danica Heller-Krippendorf develops concepts and approaches optimizing the applicability of MVA on data sets from an industrial context. They enable more time-efficient MVA of the respective ToF SIMS data. Priority is given to two main aspects by the author: First, the focus is on strategies for a mo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Heller-Krippendorf, Danica (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03663nam a2200469 4500
001 978-3-658-28502-9
003 DE-He213
005 20191031125814.0
007 cr nn 008mamaa
008 191031s2019 gw | s |||| 0|eng d
020 |a 9783658285029  |9 978-3-658-28502-9 
024 7 |a 10.1007/978-3-658-28502-9  |2 doi 
040 |d GrThAP 
050 4 |a QD96.M3 
072 7 |a PNFS  |2 bicssc 
072 7 |a SCI078000  |2 bisacsh 
072 7 |a PNFS  |2 thema 
082 0 4 |a 543.65  |2 23 
100 1 |a Heller-Krippendorf, Danica.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Multivariate Data Analysis for Root Cause Analyses and Time-of-Flight Secondary Ion Mass Spectrometry  |h [electronic resource] /  |c by Danica Heller-Krippendorf. 
250 |a 1st ed. 2019. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2019. 
300 |a XIX, 195 p. 66 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Advantages of Correlation Loadings for MVA of ToF-SIMS Spectra -- Required Number of Replicate Measurements in an Industrial Context -- Selection of Suitable Data Pre-processing in Root Cause Analysis Including the Selection of an Efficient Peak List, Scaling, Normalization and Centering -- New Presentation of PCA Results in Order to Simplify Data Analysis. 
520 |a Danica Heller-Krippendorf develops concepts and approaches optimizing the applicability of MVA on data sets from an industrial context. They enable more time-efficient MVA of the respective ToF SIMS data. Priority is given to two main aspects by the author: First, the focus is on strategies for a more time-efficient collection of the input data. This includes the optimal selection of the number of replicate measurements, the selection of input data and guidelines for the selection appropriate data preprocessing methods. Second, strategies for more efficient analysis of MVA results are presented. Contents Advantages of Correlation Loadings for MVA of ToF-SIMS Spectra Required Number of Replicate Measurements in an Industrial Context Selection of Suitable Data Pre-processing in Root Cause Analysis Including the Selection of an Efficient Peak List, Scaling, Normalization and Centering New Presentation of PCA Results in Order to Simplify Data Analysis Target Groups Scientists and students in the field of surface analysis, data evaluation, ToF-SIMS and methods of multivariate data analysis Practitioners, especially in industry, in the field of surface and error analysis About the Author Danica Heller-Krippendorf did her research and dissertation at the University of Siegen, Germany, in collaboration with a German analytical service company. Now she is engineer in analytics at a DAX company. 
650 0 |a Mass spectrometry. 
650 0 |a Physics. 
650 0 |a Spectroscopy. 
650 1 4 |a Mass Spectrometry.  |0 http://scigraph.springernature.com/things/product-market-codes/C11010 
650 2 4 |a Applied and Technical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P31000 
650 2 4 |a Spectroscopy/Spectrometry.  |0 http://scigraph.springernature.com/things/product-market-codes/C11020 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658285012 
776 0 8 |i Printed edition:  |z 9783658285036 
856 4 0 |u https://doi.org/10.1007/978-3-658-28502-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)