Explosive Percolation in Random Networks

This thesis is devoted to the study of the Bohman-Frieze-Wormald percolation model, which exhibits a discontinuous transition at the critical threshold, while the phase transitions in random networks are originally considered to be robust continuous phase transitions. The underlying mechanism that l...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chen, Wei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02750nam a22005055i 4500
001 978-3-662-43739-1
003 DE-He213
005 20151103121201.0
007 cr nn 008mamaa
008 140715s2014 gw | s |||| 0|eng d
020 |a 9783662437391  |9 978-3-662-43739-1 
024 7 |a 10.1007/978-3-662-43739-1  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Chen, Wei.  |e author. 
245 1 0 |a Explosive Percolation in Random Networks  |h [electronic resource] /  |c by Wei Chen. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XV, 63 p. 22 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Discontinuous Explosive Percolation with Multiple Giant Components -- Deriving An Underlying Mechanism for Discontinuous Percolation Transitions -- Continuous Phase Transitions in Supercritical Explosive Percolation -- Unstable Supercritical Discontinuous Percolation Transitions -- Algorithm of percolation models. 
520 |a This thesis is devoted to the study of the Bohman-Frieze-Wormald percolation model, which exhibits a discontinuous transition at the critical threshold, while the phase transitions in random networks are originally considered to be robust continuous phase transitions. The underlying mechanism that leads to the discontinuous transition in this model is carefully analyzed and many interesting critical behaviors, including multiple giant components, multiple phase transitions, and unstable giant components are revealed. These findings should also be valuable with regard to applications in other disciplines such as physics, chemistry and biology. 
650 0 |a Mathematics. 
650 0 |a Mathematical physics. 
650 0 |a Numerical analysis. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662437384 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-43739-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)