Lie Algebras and Applications

This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part inclu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Iachello, Francesco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Έκδοση:2nd ed. 2015.
Σειρά:Lecture Notes in Physics, 891
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04251nam a22005415i 4500
001 978-3-662-44494-8
003 DE-He213
005 20151204152935.0
007 cr nn 008mamaa
008 141013s2015 gw | s |||| 0|eng d
020 |a 9783662444948  |9 978-3-662-44494-8 
024 7 |a 10.1007/978-3-662-44494-8  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Iachello, Francesco.  |e author. 
245 1 0 |a Lie Algebras and Applications  |h [electronic resource] /  |c by Francesco Iachello. 
250 |a 2nd ed. 2015. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 272 p. 37 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 891 
505 0 |a Basic Concepts -- Semisimple Lie Algebras -- Lie Groups -- Lie Algebras and Lie Groups -- Homogeneous and Symmetric Spaces (Coset Spaces). - Irreducible Bases (Representations) -- Casimir Operators and Their Eigenvalues -- Tensor Operators -- Boson Realizations -- Fermion Realizations -- Differential Realizations -- Matrix Realizations -- Coset Spaces -- Spectrum Generating Algebras and Dynamic Symmetries -- Degeneracy Algebras and Dynamical Alebras -- Index. 
520 |a This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators, and the dimensions of the representations of all classical Lie algebras.   For this new edition, the text has been carefully revised and expanded; in particular, a new chapter has been added on the deformation and contraction of Lie algebras.   From the reviews of the first edition:   "Iachello has written a pedagogical and straightforward presentation of Lie algebras [...]. It is a great text to accompany a course on Lie algebras and their physical applications." (Marc de Montigny, Mathematical Reviews, Issue, 2007 i) "This book [...] written by one of the leading experts in the field [...] will certainly be of great use for students or specialists that want to refresh their knowledge on Lie algebras applied to physics. [...] An excellent reference for those interested in acquiring practical experience [...] and leaving the embarrassing theoretical presentations aside." (Rutwig Campoamor-Stursberg, Zentralblatt MATH, Vol. 1156, 2009). 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 0 |a Nuclear physics. 
650 0 |a Atoms. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Particle and Nuclear Physics. 
650 2 4 |a Atomic, Molecular, Optical and Plasma Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662444931 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 891 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-44494-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (Springer-11651)