Solutions of Nonlinear Schrӧdinger Systems

The existence and qualitative properties of nontrivial solutions for some important nonlinear Schrӧdinger systems have been studied in this thesis. For a well-known system arising from nonlinear optics and Bose-Einstein condensates (BEC), in the subcritical case, qualitative properties of ground sta...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chen, Zhijie (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03358nam a22004695i 4500
001 978-3-662-45478-7
003 DE-He213
005 20151103121053.0
007 cr nn 008mamaa
008 141124s2015 gw | s |||| 0|eng d
020 |a 9783662454787  |9 978-3-662-45478-7 
024 7 |a 10.1007/978-3-662-45478-7  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Chen, Zhijie.  |e author. 
245 1 0 |a Solutions of Nonlinear Schrӧdinger Systems  |h [electronic resource] /  |c by Zhijie Chen. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 180 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- A BEC system with dimensions N = 2;3: Ground state solutions -- A BEC system with dimensions N = 2;3: Sign-changing solutions -- A BEC system with dimensions N = 4: Critical case -- A generalized BEC system with critical exponents in dimensions -- A linearly coupled Schrӧdinger system with critical exponent. 
520 |a The existence and qualitative properties of nontrivial solutions for some important nonlinear Schrӧdinger systems have been studied in this thesis. For a well-known system arising from nonlinear optics and Bose-Einstein condensates (BEC), in the subcritical case, qualitative properties of ground state solutions, including an optimal parameter range for the existence, the uniqueness and asymptotic behaviors, have been investigated and the results could firstly partially answer open questions raised by Ambrosetti, Colorado and Sirakov. In the critical case, a systematical research on ground state solutions, including the existence, the nonexistence, the uniqueness and the phase separation phenomena of the limit profile has been presented, which seems to be the first contribution for BEC in the critical case. Furthermore, some quite different phenomena were also studied in a more general critical system. For the classical Brezis-Nirenberg critical exponent problem, the sharp energy estimate of least energy solutions in a ball has been investigated in this study. Finally, for Ambrosetti type linearly coupled Schrӧdinger equations with critical exponent, an optimal result on the existence and nonexistence of ground state solutions for different coupling constants was also obtained in this thesis. These results have many applications in Physics and PDEs. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Mathematical Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662454770 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-45478-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)