Bionic Optimization in Structural Design Stochastically Based Methods to Improve the Performance of Parts and Assemblies /

The book provides suggestions on how to start using bionic optimization methods, including pseudo-code examples of each of the important approaches and outlines of how to improve them. The most efficient methods for accelerating the studies are discussed. These include the selection of size and gene...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Steinbuch, Rolf (Επιμελητής έκδοσης), Gekeler, Simon (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03859nam a22004935i 4500
001 978-3-662-46596-7
003 DE-He213
005 20151104051026.0
007 cr nn 008mamaa
008 151104s2016 gw | s |||| 0|eng d
020 |a 9783662465967  |9 978-3-662-46596-7 
024 7 |a 10.1007/978-3-662-46596-7  |2 doi 
040 |d GrThAP 
050 4 |a TA174 
072 7 |a TBD  |2 bicssc 
072 7 |a TEC016020  |2 bisacsh 
072 7 |a TEC016000  |2 bisacsh 
082 0 4 |a 620.0042  |2 23 
245 1 0 |a Bionic Optimization in Structural Design  |h [electronic resource] :  |b Stochastically Based Methods to Improve the Performance of Parts and Assemblies /  |c edited by Rolf Steinbuch, Simon Gekeler. 
250 |a 1st ed. 2016. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 160 p. 103 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Motivation -- Bionic Optimization Strategies -- Problems and Limitations of Bionic Optimization -- Application to CAE Problems -- Applications of Bionic Optimization -- Current Fields of Interest -- Future Tasks in Optimization. 
520 |a The book provides suggestions on how to start using bionic optimization methods, including pseudo-code examples of each of the important approaches and outlines of how to improve them. The most efficient methods for accelerating the studies are discussed. These include the selection of size and generations of a study’s parameters, modification of these driving parameters, switching to gradient methods when approaching local maxima, and the use of parallel working hardware. Bionic Optimization means finding the best solution to a problem using methods found in nature. As Evolutionary Strategies and Particle Swarm Optimization seem to be the most important methods for structural optimization, we primarily focus on them. Other methods such as neural nets or ant colonies are more suited to control or process studies, so their basic ideas are outlined in order to motivate readers to start using them. A set of sample applications shows how Bionic Optimization works in practice. From academic studies on simple frames made of rods to earthquake-resistant buildings, readers follow the lessons learned, difficulties encountered and effective strategies for overcoming them. For the problem of tuned mass dampers, which play an important role in dynamic control, changing the goal and restrictions paves the way for Multi-Objective-Optimization. As most structural designers today use commercial software such as  FE-Codes or CAE systems with integrated simulation modules, ways of integrating Bionic Optimization into these software packages are outlined and examples of typical systems and typical optimization approaches are presented. The closing section focuses on an overview and outlook on reliable and robust as well as on Multi-Objective-Optimization, including discussions of current and upcoming research topics in the field concerning a unified theory for handling stochastic design processes. 
650 0 |a Engineering. 
650 0 |a Computer simulation. 
650 0 |a Computational intelligence. 
650 0 |a Engineering design. 
650 1 4 |a Engineering. 
650 2 4 |a Engineering Design. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Computational Intelligence. 
700 1 |a Steinbuch, Rolf.  |e editor. 
700 1 |a Gekeler, Simon.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662465950 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-46596-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)