Transactions on Large-Scale Data- and Knowledge-Centered Systems XX Special Issue on Advanced Techniques for Big Data Management /

The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application developme...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Hameurlain, Abdelkader (Επιμελητής έκδοσης), Küng, Josef (Επιμελητής έκδοσης), Wagner, Roland (Επιμελητής έκδοσης), Sakr, Sherif (Επιμελητής έκδοσης), Wang, Lizhe (Επιμελητής έκδοσης), Zomaya, Albert (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Σειρά:Lecture Notes in Computer Science, 9070
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05066nam a22006255i 4500
001 978-3-662-46703-9
003 DE-He213
005 20151204160724.0
007 cr nn 008mamaa
008 150317s2015 gw | s |||| 0|eng d
020 |a 9783662467039  |9 978-3-662-46703-9 
024 7 |a 10.1007/978-3-662-46703-9  |2 doi 
040 |d GrThAP 
050 4 |a QA76.76.A65 
072 7 |a UNH  |2 bicssc 
072 7 |a UDBD  |2 bicssc 
072 7 |a COM032000  |2 bisacsh 
082 0 4 |a 005.7  |2 23 
245 1 0 |a Transactions on Large-Scale Data- and Knowledge-Centered Systems XX  |h [electronic resource] :  |b Special Issue on Advanced Techniques for Big Data Management /  |c edited by Abdelkader Hameurlain, Josef Küng, Roland Wagner, Sherif Sakr, Lizhe Wang, Albert Zomaya. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 159 p. 64 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 9070 
505 0 |a A Proxy Service for Multi-tenant Elastic Extension Tables -- Boosting Streaming Video Delivery with WiseReplica -- A Cloud-Based, Geospatial Linked Data Management System -- A Scalable Expressive Ensemble Learning Using Random Prism: A MapReduce Approach -- Performance Analysis of Adapting a MapReduce Framework to Dynamically Accommodate Heterogeneity -- An Overview of Cloud Based Content Delivery Networks: Research Dimensions and State-of-the-Art. 
520 |a The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This, the 20th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, presents a representative and useful selection of articles covering a wide range of important topics in the domain of advanced techniques for big data management. Big data has become a popular term, used to describe the exponential growth and availability of data. The recent radical expansion and integration of computation, networking, digital devices, and data storage has provided a robust platform for the explosion in big data, as well as being the means by which big data are generated, processed, shared, and analyzed. In general, data are only useful if meaning and value can be extracted from them. Big data discovery enables data scientists and other analysts to uncover patterns and correlations through analysis of large volumes of data of diverse types. Insights gleaned from big data discovery can provide businesses with significant competitive advantages, leading to more successful marketing campaigns, decreased customer churn, and reduced loss from fraud. In practice, the growing demand for large-scale data processing and data analysis applications has spurred the development of novel solutions from both industry and academia. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 0 |a Management information systems. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Database Management. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Management of Computing and Information Systems. 
700 1 |a Hameurlain, Abdelkader.  |e editor. 
700 1 |a Küng, Josef.  |e editor. 
700 1 |a Wagner, Roland.  |e editor. 
700 1 |a Sakr, Sherif.  |e editor. 
700 1 |a Wang, Lizhe.  |e editor. 
700 1 |a Zomaya, Albert.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662467022 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 9070 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-46703-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)