Off-Diagonal Bethe Ansatz for Exactly Solvable Models

This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wang, Yupeng (Συγγραφέας), Yang, Wen-Li (Συγγραφέας), Cao, Junpeng (Συγγραφέας), Shi, Kangjie (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02985nam a22005175i 4500
001 978-3-662-46756-5
003 DE-He213
005 20151106151045.0
007 cr nn 008mamaa
008 150421s2015 gw | s |||| 0|eng d
020 |a 9783662467565  |9 978-3-662-46756-5 
024 7 |a 10.1007/978-3-662-46756-5  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Wang, Yupeng.  |e author. 
245 1 0 |a Off-Diagonal Bethe Ansatz for Exactly Solvable Models  |h [electronic resource] /  |c by Yupeng Wang, Wen-Li Yang, Junpeng Cao, Kangjie Shi. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 296 p. 9 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview -- The algebraic Bethe ansatz -- The periodic anisotropic spin-1/2 chains -- The spin-1/2 torus -- The spin-1/2 chain with arbitrary boundary fields -- The one-dimensional Hubbard model -- The nested off-diagonal Bethe ansatz -- The hierarchical off-diagonal Bethe Ansatz -- The Izergin-Korepin model. 
520 |a This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Quantum field theory. 
650 0 |a String theory. 
650 0 |a Condensed matter. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Condensed Matter Physics. 
650 2 4 |a Quantum Field Theories, String Theory. 
650 2 4 |a Mathematical Physics. 
700 1 |a Yang, Wen-Li.  |e author. 
700 1 |a Cao, Junpeng.  |e author. 
700 1 |a Shi, Kangjie.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662467558 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-46756-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)