Structure-Preserving Algorithms for Oscillatory Differential Equations II

This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wu, Xinyuan (Συγγραφέας), Liu, Kai (Συγγραφέας), Shi, Wei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03947nam a22005175i 4500
001 978-3-662-48156-1
003 DE-He213
005 20170214192219.0
007 cr nn 008mamaa
008 160302s2015 gw | s |||| 0|eng d
020 |a 9783662481561  |9 978-3-662-48156-1 
024 7 |a 10.1007/978-3-662-48156-1  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Wu, Xinyuan.  |e author. 
245 1 0 |a Structure-Preserving Algorithms for Oscillatory Differential Equations II  |h [electronic resource] /  |c by Xinyuan Wu, Kai Liu, Wei Shi. 
250 |a 1st ed. 2015. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 298 p. 55 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Matrix-variation-of-constants formula -- Improved St ¨ormer-Verlet formulae with applications -- Improved Filon-type asymptotic methods for highly oscillatory differential equations -- Efficient energy-preserving integrators for multi-frequency oscillatory Hamiltonian systems -- An extended discrete gradient formula for multi-frequency oscillatory Hamiltonian systems -- Trigonometric Fourier collocation methods for multi-frequency oscillatory systems -- Error bounds for explicit ERKN integrators for multi-frequency oscillatory systems -- Error analysis of explicit TSERKN methods for highly oscillatory systems -- Highly accurate explicit symplectic ERKN methods for multi-frequency oscillatory Hamiltonian systems -- Multidimensional ARKN methods for general multi-frequency oscillatory second-order IVPs -- A simplified Nystr¨om-tree theory for ERKN integrators solving oscillatory systems -- An efficient high-order explicit scheme for solving Hamiltonian nonlinear wave equations. 
520 |a This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods. The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and scientists investigating oscillatory systems, as well as for teachers and students who are interested in structure-preserving algorithms for differential equations. 
650 0 |a Engineering. 
650 0 |a Computer mathematics. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Liu, Kai.  |e author. 
700 1 |a Shi, Wei.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662481554 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-48156-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)