Machine Learning for Cyber Physical Systems Selected papers from the International Conference ML4CPS 2015 /

The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 1-2, 2015. Cyber Physical Systems are ch...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Niggemann, Oliver (Επιμελητής έκδοσης), Beyerer, Jürgen (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer Vieweg, 2016.
Έκδοση:1st ed. 2016.
Σειρά:Technologien für die intelligente Automation, Technologies for Intelligent Automation
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03908nam a22005055i 4500
001 978-3-662-48838-6
003 DE-He213
005 20160222101711.0
007 cr nn 008mamaa
008 160219s2016 gw | s |||| 0|eng d
020 |a 9783662488386  |9 978-3-662-48838-6 
024 7 |a 10.1007/978-3-662-48838-6  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning for Cyber Physical Systems  |h [electronic resource] :  |b Selected papers from the International Conference ML4CPS 2015 /  |c edited by Oliver Niggemann, Jürgen Beyerer. 
250 |a 1st ed. 2016. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer Vieweg,  |c 2016. 
300 |a VI, 121 p. 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation 
505 0 |a Development of a Cyber-Physical System based on selective dynamic Gaussian naive Bayes model for a self-predict laser surface heat treatment process control -- Evidence Grid Based Information Fusion for Semantic Classifiers in Dynamic Sensor Networks -- Forecasting Cellular Connectivity for Cyber- Physical Systems: A Machine Learning Approach -- Towards Optimized Machine Operations by Cloud Integrated Condition Estimation -- Prognostics Health  Management System based on Hybrid Model to Predict Failures of a Planetary Gear Transmission -- Evaluation of Model-Based Condition Monitoring Systems in Industrial Application Cases -- Towards a novel learning assistant for networked automation systems -- Effcient Image Processing System for an Industrial Machine Learning Task -- Efficient engineering in special purpose machinery through automated control code synthesis based on a functional categorisation -- Geo-Distributed Analytics for the Internet of Things -- Imple mentation and Comparison of Cluster-Based PSO Extensions in Hybrid Settings with Efficient Approximation -- Machine-specifc Approach for Automatic Classifcation of Cutting Process Efficiency -- Meta-analysis of Maintenance Knowledge Assets Towards Predictive Cost Controlling of Cyber Physical Production Systems -- Towards Autonomously Navigating and Cooperating Vehicles in Cyber-Physical Production Systems. 
520 |a The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 1-2, 2015. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. 
650 0 |a Engineering. 
650 0 |a Knowledge management. 
650 0 |a Data mining. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Knowledge Management. 
700 1 |a Niggemann, Oliver.  |e editor. 
700 1 |a Beyerer, Jürgen.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662488362 
830 0 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-48838-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)