Mathematical Analysis II
This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Espe...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2016.
|
Έκδοση: | 2nd ed. 2016. |
Σειρά: | Universitext,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 9 Continuous Mappings (General Theory)
- 10 Differential Calculus from a General Viewpoint
- 11 Multiple Integrals
- 12 Surfaces and Differential Forms in Rn
- 13 Line and Surface Integrals
- 14 Elements of Vector Analysis and Field Theory
- 15 Integration of Differential Forms on Manifolds
- 16 Uniform Convergence and Basic Operations of Analysis
- 17 Integrals Depending on a Parameter
- 18 Fourier Series and the Fourier Transform
- 19 Asymptotic Expansions
- Topics and Questions for Midterm Examinations
- Examination Topics
- Examination Problems (Series and Integrals Depending on a Parameter)
- Intermediate Problems (Integral Calculus of Several Variables)
- Appendices: A Series as a Tool (Introductory Lecture)
- B Change of Variables in Multiple Integrals
- C Multidimensional Geometry and Functions of a Very Large Number of Variables
- D Operators of Field Theory in Curvilinear Coordinates
- E Modern Formula of Newton–Leibniz
- References
- Index of Basic Notation
- Subject Index
- Name Index.