Process Mining Data Science in Action /

This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerabl...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: van der Aalst, Wil (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2016.
Έκδοση:2nd ed. 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03519nam a22005535i 4500
001 978-3-662-49851-4
003 DE-He213
005 20160415151905.0
007 cr nn 008mamaa
008 160415s2016 gw | s |||| 0|eng d
020 |a 9783662498514  |9 978-3-662-49851-4 
024 7 |a 10.1007/978-3-662-49851-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.76.A65 
072 7 |a UNH  |2 bicssc 
072 7 |a UDBD  |2 bicssc 
072 7 |a COM032000  |2 bisacsh 
082 0 4 |a 005.7  |2 23 
100 1 |a van der Aalst, Wil.  |e author. 
245 1 0 |a Process Mining  |h [electronic resource] :  |b Data Science in Action /  |c by Wil van der Aalst. 
250 |a 2nd ed. 2016. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2016. 
300 |a XIX, 467 p. 250 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Preliminaries -- From Event Logs to Process Models -- Beyond Process Discovery -- Putting Process Mining to Work -- Reflection -- Epilogue. 
520 |a This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerably expanded section on software tools and a completely new chapter of process mining in the large. It is self-contained, while at the same time covering the entire process-mining spectrum from process discovery to predictive analytics. After a general introduction to data science and process mining in Part I, Part II provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Next, Part III focuses on process discovery as the most important process mining task, while Part IV moves beyond discovering the control flow of processes, highlighting conformance checking, and organizational and time perspectives. Part V offers a guide to successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM and several commercial products. Lastly, Part VI takes a step back, reflecting on the material presented and the key open challenges. Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers. 
650 0 |a Computer science. 
650 0 |a Information technology. 
650 0 |a Business  |x Data processing. 
650 0 |a Software engineering. 
650 0 |a Computer logic. 
650 0 |a Information storage and retrieval. 
650 0 |a Application software. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a IT in Business. 
650 2 4 |a Software Engineering. 
650 2 4 |a Logics and Meanings of Programs. 
650 2 4 |a Computer Appl. in Administrative Data Processing. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662498507 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-49851-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)