Information Fusion Under Consideration of Conflicting Input Signals

This work proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) and the µBalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. In addition, a sensor defect detect...

Full description

Bibliographic Details
Main Author: Mönks, Uwe (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer Vieweg, 2017.
Series:Technologien für die intelligente Automation, Technologies for Intelligent Automation
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03224nam a22005055i 4500
001 978-3-662-53752-7
003 DE-He213
005 20161130072948.0
007 cr nn 008mamaa
008 161130s2017 gw | s |||| 0|eng d
020 |a 9783662537527  |9 978-3-662-53752-7 
024 7 |a 10.1007/978-3-662-53752-7  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Mönks, Uwe.  |e author. 
245 1 0 |a Information Fusion Under Consideration of Conflicting Input Signals  |h [electronic resource] /  |c by Uwe Mönks. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer Vieweg,  |c 2017. 
300 |a XIX, 240 p. 58 illus., 35 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation 
505 0 |a Introduction -- Scientific State of the Art -- Preliminaries -- Multilayer Attribute-based Conflict-reducing Observation -- Evaluation -- Summary. 
520 |a This work proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) and the µBalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. In addition, a sensor defect detection method, which is based on the continuous monitoring of sensor reliabilities, is presented. The performances of the contributions are shown by their evaluation in the scope of both a publicly available data set and a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The author Dr.-Ing. Uwe Mönks studied Electrical Engineering and Information Technology at the OWL University of Applied Sciences (Lemgo), Halmstad University (Sweden), and Aalborg University (Denmark). Since 2009 he is employed at the Institute Industrial IT (inIT) as research associate with project leading responsibilities. During this time he completed his doctorate (Dr.-Ing.) in a cooperative graduation with Ruhr-University Bochum. His research interests are in the area of multisensor and information fusion, pattern recognition, and machine learning. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Robotics and Automation. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662537510 
830 0 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-53752-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)