Machine Learning for Cyber Physical Systems Selected papers from the International Conference ML4CPS 2016 /

The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, September 29th, 2016. Cyber Physical Systems...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Beyerer, Jürgen (Επιμελητής έκδοσης), Niggemann, Oliver (Επιμελητής έκδοσης), Kühnert, Christian (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer Vieweg, 2017.
Σειρά:Technologien für die intelligente Automation, Technologies for Intelligent Automation
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04150nam a22005055i 4500
001 978-3-662-53806-7
003 DE-He213
005 20161130071048.0
007 cr nn 008mamaa
008 161130s2017 gw | s |||| 0|eng d
020 |a 9783662538067  |9 978-3-662-53806-7 
024 7 |a 10.1007/978-3-662-53806-7  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning for Cyber Physical Systems  |h [electronic resource] :  |b Selected papers from the International Conference ML4CPS 2016 /  |c edited by Jürgen Beyerer, Oliver Niggemann, Christian Kühnert. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer Vieweg,  |c 2017. 
300 |a VII, 72 p. 24 illus., 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation 
505 0 |a A Concept for the Application of Reinforcement Learning in the Optimization of CAM-Generated Tool Paths -- Semantic Stream Processing in Dynamic Environments Using Dynamic Stream Selection -- Dynamic Bayesian Network-Based Anomaly Detection for In-Process Visual Inspection of Laser Surface Heat Treatment -- A Modular Architecture for Smart Data Analysis using AutomationML, OPC-UA and Data-driven Algorithms -- Cloud-based event detection platform for water distribution networks using machine-learning algorithms -- A Generic Data Fusion and Analysis Platform for Cyber-Physical Systems -- Agent Swarm Optimization: Exploding the search space -- Anomaly Detection in Industrial Networks using Machine Learning. . 
520 |a The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, September 29th, 2016. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. The Editors Prof. Dr.-Ing. Jürgen Beyerer is Professor at the Department for Interactive Real-Time Systems at the Karlsruhe Institute of Technology. In addition he manages the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB. Prof. Dr. Oliver Niggemann is Professor for Embedded Software Engineering. His research interests are in the field of Distributed Real-time Software and in the fields of analysis and diagnosis of distributed systems. He is a board member of the inIT and a senior researcher at the Fraunhofer Application Center Industrial Automation INA located in Lemgo. Dr. Christian Kühnert is a senior researcher at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB. His research interests are in the field of machine-learning, data-fusion and data-driven condition monitoring. . 
650 0 |a Engineering. 
650 0 |a Knowledge management. 
650 0 |a Data mining. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Knowledge Management. 
700 1 |a Beyerer, Jürgen.  |e editor. 
700 1 |a Niggemann, Oliver.  |e editor. 
700 1 |a Kühnert, Christian.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662538050 
830 0 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-53806-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)