Introduction to Learning Classifier Systems

This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Urbanowicz, Ryan J. (Συγγραφέας), Browne, Will N. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03348nam a22006135i 4500
001 978-3-662-55007-6
003 DE-He213
005 20170817165913.0
007 cr nn 008mamaa
008 170817s2017 gw | s |||| 0|eng d
020 |a 9783662550076  |9 978-3-662-55007-6 
024 7 |a 10.1007/978-3-662-55007-6  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Urbanowicz, Ryan J.  |e author. 
245 1 0 |a Introduction to Learning Classifier Systems  |h [electronic resource] /  |c by Ryan J. Urbanowicz, Will N. Browne. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 123 p. 27 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,  |x 2196-548X 
505 0 |a LCSs in a Nutshell -- LCS Concepts -- Functional Cycle Components -- LCS Adaptability -- Applying LCSs. 
520 |a This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, and machine learning practitioners. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Bioinformatics. 
650 0 |a Mathematical optimization. 
650 0 |a Computational intelligence. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Optimization. 
650 2 4 |a Computational Biology/Bioinformatics. 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Theory of Computation. 
700 1 |a Browne, Will N.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662550069 
830 0 |a SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,  |x 2196-548X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-55007-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)