Algebraic Theory of Locally Nilpotent Derivations

This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Freudenburg, Gene (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2017.
Έκδοση:2nd ed. 2017.
Σειρά:Encyclopaedia of Mathematical Sciences, 136.3
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03385nam a22005295i 4500
001 978-3-662-55350-3
003 DE-He213
005 20170909130013.0
007 cr nn 008mamaa
008 170909s2017 gw | s |||| 0|eng d
020 |a 9783662553503  |9 978-3-662-55350-3 
024 7 |a 10.1007/978-3-662-55350-3  |2 doi 
040 |d GrThAP 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Freudenburg, Gene.  |e author. 
245 1 0 |a Algebraic Theory of Locally Nilpotent Derivations  |h [electronic resource] /  |c by Gene Freudenburg. 
246 3 |a Invariant Theory and Algebraic Transformation Groups VII 
250 |a 2nd ed. 2017. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2017. 
300 |a XXII, 319 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences,  |x 0938-0396 ;  |v 136.3 
505 0 |a Introduction -- 1 First Principles -- 2 Further Properties of LNDs -- 3 Polynomial Rings -- 4 Dimension Two -- 5 Dimension Three -- 6 Linear Actions of Unipotent Groups -- 7 Non-Finitely Generated Kernels -- 8 Algorithms -- 9 Makar-Limanov and Derksen Invariants -- 10 Slices, Embeddings and Cancellation -- 11 Epilogue -- References -- Index. 
520 |a This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves. More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem. A lot of new material is included in this expanded second edition, such as canonical factorization of quotient morphisms, and a more extended treatment of linear actions. The reader will also find a wealth of examples and open problems and an updated resource for future investigations. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662553480 
830 0 |a Encyclopaedia of Mathematical Sciences,  |x 0938-0396 ;  |v 136.3 
856 4 0 |u http://dx.doi.org/10.1007/978-3-662-55350-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)