Algebraic Theory of Locally Nilpotent Derivations
This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a...
| Κύριος συγγραφέας: | |
|---|---|
| Συγγραφή απο Οργανισμό/Αρχή: | |
| Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
| Γλώσσα: | English |
| Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2017.
|
| Έκδοση: | 2nd ed. 2017. |
| Σειρά: | Encyclopaedia of Mathematical Sciences,
136.3 |
| Θέματα: | |
| Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- 1 First Principles
- 2 Further Properties of LNDs
- 3 Polynomial Rings
- 4 Dimension Two
- 5 Dimension Three
- 6 Linear Actions of Unipotent Groups
- 7 Non-Finitely Generated Kernels
- 8 Algorithms
- 9 Makar-Limanov and Derksen Invariants
- 10 Slices, Embeddings and Cancellation
- 11 Epilogue
- References
- Index.