Algebraic Theory of Locally Nilpotent Derivations
This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2017.
|
Έκδοση: | 2nd ed. 2017. |
Σειρά: | Encyclopaedia of Mathematical Sciences,
136.3 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- 1 First Principles
- 2 Further Properties of LNDs
- 3 Polynomial Rings
- 4 Dimension Two
- 5 Dimension Three
- 6 Linear Actions of Unipotent Groups
- 7 Non-Finitely Generated Kernels
- 8 Algorithms
- 9 Makar-Limanov and Derksen Invariants
- 10 Slices, Embeddings and Cancellation
- 11 Epilogue
- References
- Index.