Inverse Galois Theory

This second edition addresses the question of which finite groups occur as Galois groups over a given field. In particular, this includes the question of the structure and the representations of the absolute Galois group of K, as well as its finite epimorphic images, generally referred to as the inv...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Malle, Gunter (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Matzat, B. Heinrich (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2018.
Έκδοση:2nd ed. 2018.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03381nam a2200493 4500
001 978-3-662-55420-3
003 DE-He213
005 20190617231320.0
007 cr nn 008mamaa
008 180727s2018 gw | s |||| 0|eng d
020 |a 9783662554203  |9 978-3-662-55420-3 
024 7 |a 10.1007/978-3-662-55420-3  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Malle, Gunter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Inverse Galois Theory   |h [electronic resource] /  |c by Gunter Malle, B. Heinrich Matzat. 
250 |a 2nd ed. 2018. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2018. 
300 |a XVII, 533 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a I.The Rigidity Method -- II. Applications of Rigidity -- III. Action of Braids -- IV. Embedding Problems -- V. Additive Polynomials -- VI.Rigid Analytic Methods -- Appendix: Example Polynomials -- References -- Index. 
520 |a This second edition addresses the question of which finite groups occur as Galois groups over a given field. In particular, this includes the question of the structure and the representations of the absolute Galois group of K, as well as its finite epimorphic images, generally referred to as the inverse problem of Galois theory. In the past few years, important strides have been made in all of these areas. The aim of the book is to provide a systematic and extensive overview of these advances, with special emphasis on the rigidity method and its applications. Among others, the book presents the most successful known existence theorems and construction methods for Galois extensions and solutions of embedding problems, together with a collection of the current Galois realizations. There have been two major developments since the first edition of this book was released. The first is the algebraization of the Katz algorithm for (linearly) rigid generating systems of finite groups; the second is the emergence of a modular Galois theory. The latter has led to new construction methods for additive polynomials with given Galois group over fields of positive characteristic. Both methods have their origin in the Galois theory of differential and difference equations. 
650 0 |a Group theory. 
650 0 |a Topology. 
650 1 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
650 2 4 |a Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28000 
700 1 |a Matzat, B. Heinrich.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662554197 
776 0 8 |i Printed edition:  |z 9783662554210 
776 0 8 |i Printed edition:  |z 9783662585559 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://doi.org/10.1007/978-3-662-55420-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)