Mathematical Physics: Classical Mechanics

As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascina...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Knauf, Andreas (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:La Matematica per il 3+2, 109
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03520nam a2200469 4500
001 978-3-662-55774-7
003 DE-He213
005 20191220125313.0
007 cr nn 008mamaa
008 180224s2018 gw | s |||| 0|eng d
020 |a 9783662557747  |9 978-3-662-55774-7 
024 7 |a 10.1007/978-3-662-55774-7  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Knauf, Andreas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Physics: Classical Mechanics  |h [electronic resource] /  |c by Andreas Knauf. 
250 |a 1st ed. 2018. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2018. 
300 |a XIV, 683 p. 92 illus., 53 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a La Matematica per il 3+2,  |x 2038-5722 ;  |v 109 
505 0 |a Remarks on Mathematial Physics -- 1 Introduction -- 2 Dynamical Systems -- 3 Ordinary Differential Equations -- 4 Linear Dynamics -- 5 Classification of Linear Flows -- 6 Hamiltonian Equations and Symplectic Group -- 7 Stability Theory -- 8 Variational Principles -- 9 Ergodic Theory -- 10 Symplectic Geometry -- 11 Motion in a Potential -- 12 Scattering Theory -- 13 Integrable Systems and Symmetries -- 14 Rigid and Non-Rigid Bodies -- 15 Perturbation Theory -- 16 Relativistic Mechanics -- 17 Symplectic Topology -- A Topological Spaces and Manifolds -- B Differential Forms -- C Convexity and Legendre Transform -- D Fixed Point Theorems, and Results about Inverse Images -- E Group Theory -- F Bundles, Connection, Curvature -- G Morse Theory -- H Solutions of the Exercises -- Bibiography -- Index of Proper Names -- Table of Symbols -- Image Credits -- Index. 
520 |a As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19005 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662557723 
776 0 8 |i Printed edition:  |z 9783662557730 
830 0 |a La Matematica per il 3+2,  |x 2038-5722 ;  |v 109 
856 4 0 |u https://doi.org/10.1007/978-3-662-55774-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)