Singular Spectrum Analysis with R

This comprehensive and richly illustrated volume provides up-to-date material on Singular Spectrum Analysis (SSA). SSA is a well-known methodology for the analysis and forecasting of time series. Since quite recently, SSA is also being used to analyze digital images and other objects that are not ne...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Golyandina, Nina (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Korobeynikov, Anton (http://id.loc.gov/vocabulary/relators/aut), Zhigljavsky, Anatoly (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Use R!,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04636nam a2200553 4500
001 978-3-662-57380-8
003 DE-He213
005 20191024181212.0
007 cr nn 008mamaa
008 180614s2018 gw | s |||| 0|eng d
020 |a 9783662573808  |9 978-3-662-57380-8 
024 7 |a 10.1007/978-3-662-57380-8  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Golyandina, Nina.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Singular Spectrum Analysis with R  |h [electronic resource] /  |c by Nina Golyandina, Anton Korobeynikov, Anatoly Zhigljavsky. 
250 |a 1st ed. 2018. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 272 p. 121 illus., 106 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Use R!,  |x 2197-5736 
505 0 |a Preface -- Common symbols and acronyms -- Contents -- 1 Introduction: Overview -- 2 SSA analysis of one-dimensional time series -- 3 Parameter estimation, forecasting, gap filling -- 4 SSA for multivariate time series -- 5 Image processing -- Index -- References. 
520 |a This comprehensive and richly illustrated volume provides up-to-date material on Singular Spectrum Analysis (SSA). SSA is a well-known methodology for the analysis and forecasting of time series. Since quite recently, SSA is also being used to analyze digital images and other objects that are not necessarily of planar or rectangular form and may contain gaps. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas, most notably those associated with time series and digital images. An effective, comfortable and accessible implementation of SSA is provided by the R-package Rssa, which is available from CRAN and reviewed in this book. Written by prominent statisticians who have extensive experience with SSA, the book (a) presents the up-to-date SSA methodology, including multidimensional extensions, in language accessible to a large circle of users, (b) combines different versions of SSA into a single tool, (c) shows the diverse tasks that SSA can be used for, (d) formally describes the main SSA methods and algorithms, and (e) provides tutorials on the Rssa package and the use of SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The book is written on a level accessible to a broad audience and includes a wealth of examples; hence it can also be used as a textbook for undergraduate and postgraduate courses on time series analysis and signal processing. 
650 0 |a Statistics . 
650 0 |a Optical data processing. 
650 0 |a Computer software. 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics.  |0 http://scigraph.springernature.com/things/product-market-codes/I22005 
650 2 4 |a Mathematical Software.  |0 http://scigraph.springernature.com/things/product-market-codes/M14042 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 http://scigraph.springernature.com/things/product-market-codes/S17010 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 http://scigraph.springernature.com/things/product-market-codes/S12008 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
700 1 |a Korobeynikov, Anton.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhigljavsky, Anatoly.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662573785 
776 0 8 |i Printed edition:  |z 9783662573792 
830 0 |a Use R!,  |x 2197-5736 
856 4 0 |u https://doi.org/10.1007/978-3-662-57380-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)