Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence
Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author's contribution to the area. The book introduce...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Springer Series on Bio- and Neurosystems,
7 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Part I. Time-Space and AI
- Part II. The Human Brain
- Part III. Spiking Neural Networks
- Part IV. SNN for Deep Learning and Deep Knowledge Representation of Brain Data
- Part V. SNN for Audio-Visual Data and Brain-Computer Interfaces
- Part VI. SNN in Bio- and Neuroinformatics
- Part VII. SNN for Deep in Time-Space Learning and Deep Knowledge Representation of Multisensory Streaming Data
- Part VIII. Future development in BI-SNN and BI-AI.