BERRU Predictive Modeling Best Estimate Results with Reduced Uncertainties /

This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. Therefore, knowing only the nominal values of experimentally measured or computed quantities is insufficient for applications, particularly sin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cacuci, Dan Gabriel (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05222nam a2200517 4500
001 978-3-662-58395-1
003 DE-He213
005 20191024172347.0
007 cr nn 008mamaa
008 181229s2019 gw | s |||| 0|eng d
020 |a 9783662583951  |9 978-3-662-58395-1 
024 7 |a 10.1007/978-3-662-58395-1  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620.00151  |2 23 
100 1 |a Cacuci, Dan Gabriel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a BERRU Predictive Modeling  |h [electronic resource] :  |b Best Estimate Results with Reduced Uncertainties /  |c by Dan Gabriel Cacuci. 
250 |a 1st ed. 2019. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2019. 
300 |a XIV, 451 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Basics of predictive best-estimate model calibration -- Predictive best-estimate model-validation, model-calibration and model-verification concerning open and chaotic systems -- Differences to traditional statostic evaluation methods -- Examples. 
520 |a This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. Therefore, knowing only the nominal values of experimentally measured or computed quantities is insufficient for applications, particularly since the respective experimental and computed nominal values seldom coincide. In the author's view, the objective of predictive modeling is to extract "best estimate" values for model parameters and predicted results, together with "best estimate" uncertainties for these parameters and results. To achieve this goal, predictive modeling combines imprecisely known experimental and computational data, which calls for reasoning on the basis of incomplete, error-rich, and occasionally discrepant information. The customary methods used for data assimilation combine experimental and computational information by minimizing an a priori, user-chosen, "cost functional" (usually a quadratic functional that represents the weighted errors between measured and computed responses). In contrast to these user-influenced methods, the BERRU (Best Estimate Results with Reduced Uncertainties) Predictive Modeling methodology developed by the author relies on the thermodynamics-based maximum entropy principle to eliminate the need for relying on minimizing user-chosen functionals, thus generalizing the "data adjustment" and/or the "4D-VAR" data assimilation procedures used in the geophysical sciences. The BERRU predictive modeling methodology also provides a "model validation metric" which quantifies the consistency (agreement/disagreement) between measurements and computations. This "model validation metric" (or "consistency indicator") is constructed from parameter covariance matrices, response covariance matrices (measured and computed), and response sensitivities to model parameters. Traditional methods for computing response sensitivities are hampered by the "curse of dimensionality," which makes them impractical for applications to large-scale systems that involve many imprecisely known parameters. Reducing the computational effort required for precisely calculating the response sensitivities is paramount, and the comprehensive adjoint sensitivity analysis methodology developed by the author shows great promise in this regard, as shown in this book. After discarding inconsistent data (if any) using the consistency indicator, the BERRU predictive modeling methodology provides best-estimate values for predicted parameters and responses along with best-estimate reduced uncertainties (i.e., smaller predicted standard deviations) for the predicted quantities. Applying the BERRU methodology yields optimal, experimentally validated, "best estimate" predictive modeling tools for designing new technologies and facilities, while also improving on existing ones. . 
650 0 |a Engineering mathematics. 
650 0 |a Computer simulation. 
650 0 |a Mathematical models. 
650 0 |a Quality control. 
650 0 |a Reliability. 
650 0 |a Industrial safety. 
650 1 4 |a Engineering Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/T11030 
650 2 4 |a Simulation and Modeling.  |0 http://scigraph.springernature.com/things/product-market-codes/I19000 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M14068 
650 2 4 |a Quality Control, Reliability, Safety and Risk.  |0 http://scigraph.springernature.com/things/product-market-codes/T22032 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662583937 
776 0 8 |i Printed edition:  |z 9783662583944 
856 4 0 |u https://doi.org/10.1007/978-3-662-58395-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)