Shapes and Diffeomorphisms

This book covers mathematical foundations and methods for the computerized analysis of shapes, providing the requisite background in geometry and functional analysis and introducing various algorithms and approaches to shape modeling, with a special focus on the interesting connections between shape...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Younes, Laurent (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2019.
Έκδοση:2nd ed. 2019.
Σειρά:Applied Mathematical Sciences, 171
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04753nam a2200589 4500
001 978-3-662-58496-5
003 DE-He213
005 20191025121344.0
007 cr nn 008mamaa
008 190517s2019 gw | s |||| 0|eng d
020 |a 9783662584965  |9 978-3-662-58496-5 
024 7 |a 10.1007/978-3-662-58496-5  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Younes, Laurent.  |e author.  |0 (orcid)0000-0003-2017-9565  |1 https://orcid.org/0000-0003-2017-9565  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Shapes and Diffeomorphisms  |h [electronic resource] /  |c by Laurent Younes. 
250 |a 2nd ed. 2019. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2019. 
300 |a XXIII, 558 p. 47 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 171 
505 0 |a Preface to the 2nd Edition -- Preface to the 1st Edition -- Parametrized Plane Curves -- Medial Axis -- Local Properties of Surfaces -- Computations on Triangulated Surfaces- Evolving Curves and Surfaces -- Deformable templates -- Ordinary Differential Equations and Groups of Diffeomorphisms -- Building Admissible Spaces -- Deformable Objects and Matching Functionals -- Diffeomorphic Matching -- Distances and Group Actions -- Metamorphosis -- Analyzing Shape Datasets -- Appendices: Elements from Functional Analysis -- Elements from Differential Geometry -- Ordinary Differential Equations -- Introduction to Optimization and Optimal Control Theory. - Principal Component Analysis -- Dynamic Programming -- References -- Index. 
520 |a This book covers mathematical foundations and methods for the computerized analysis of shapes, providing the requisite background in geometry and functional analysis and introducing various algorithms and approaches to shape modeling, with a special focus on the interesting connections between shapes and their transformations by diffeomorphisms. A direct application is to computational anatomy, for which techniques such as large‒deformation diffeomorphic metric mapping and metamorphosis, among others, are presented. The appendices detail a series of classical topics (Hilbert spaces, differential equations, Riemannian manifolds, optimal control). The intended audience is applied mathematicians and mathematically inclined engineers interested in the topic of shape analysis and its possible applications in computer vision or medical imaging. The first part can be used for an advanced undergraduate course on differential geometry with a focus on applications while the later chapters are suitable for a graduate course on shape analysis through the action of diffeomorphisms. Several significant additions appear in the 2nd edition, most notably a new chapter on shape datasets, and a discussion of optimal control theory in an infinite-dimensional framework, which is then used to enrich the presentation of diffeomorphic matching. . 
650 0 |a Computer science-Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Statistics . 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential geometry. 
650 0 |a Calculus of variations. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematical Applications in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/M13110 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
650 2 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26016 
650 2 4 |a Physiological, Cellular and Medical Topics.  |0 http://scigraph.springernature.com/things/product-market-codes/M31020 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662584958 
776 0 8 |i Printed edition:  |z 9783662584972 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 171 
856 4 0 |u https://doi.org/10.1007/978-3-662-58496-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)