Model Averaging

This book provides a concise and accessible overview of model averaging, with a focus on applications. Model averaging is a common means of allowing for model uncertainty when analysing data, and has been used in a wide range of application areas, such as ecology, econometrics, meteorology and pharm...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fletcher, David (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03368nam a2200517 4500
001 978-3-662-58541-2
003 DE-He213
005 20191025221043.0
007 cr nn 008mamaa
008 190117s2018 gw | s |||| 0|eng d
020 |a 9783662585412  |9 978-3-662-58541-2 
024 7 |a 10.1007/978-3-662-58541-2  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Fletcher, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Model Averaging  |h [electronic resource] /  |c by David Fletcher. 
250 |a 1st ed. 2018. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2018. 
300 |a X, 107 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 |a Why Model Averaging? -- Bayesian Model Averaging -- Frequentist Model Averaging -- Summary and Future Directions. 
520 |a This book provides a concise and accessible overview of model averaging, with a focus on applications. Model averaging is a common means of allowing for model uncertainty when analysing data, and has been used in a wide range of application areas, such as ecology, econometrics, meteorology and pharmacology. The book presents an overview of the methods developed in this area, illustrating many of them with examples from the life sciences involving real-world data. It also includes an extensive list of references and suggestions for further research. Further, it clearly demonstrates the links between the methods developed in statistics, econometrics and machine learning, as well as the connection between the Bayesian and frequentist approaches to model averaging. The book appeals to statisticians and scientists interested in what methods are available, how they differ and what is known about their properties. It is assumed that readers are familiar with the basic concepts of statistical theory and modelling, including probability, likelihood and generalized linear models. 
650 0 |a Statistics . 
650 0 |a Ecology . 
650 0 |a Biostatistics. 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Theoretical Ecology/Statistics.  |0 http://scigraph.springernature.com/things/product-market-codes/L19147 
650 2 4 |a Biostatistics.  |0 http://scigraph.springernature.com/things/product-market-codes/L15020 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 http://scigraph.springernature.com/things/product-market-codes/S17010 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662585405 
776 0 8 |i Printed edition:  |z 9783662585429 
830 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u https://doi.org/10.1007/978-3-662-58541-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)