Nonlinear Mechanics of Thin-Walled Structures Asymptotics, Direct Approach and Numerical Analysis /

This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thick...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Vetyukov, Yury (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Vienna : Springer Vienna : Imprint: Springer, 2014.
Σειρά:Foundations of Engineering Mechanics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03537nam a22005055i 4500
001 978-3-7091-1777-4
003 DE-He213
005 20151204182415.0
007 cr nn 008mamaa
008 140123s2014 au | s |||| 0|eng d
020 |a 9783709117774  |9 978-3-7091-1777-4 
024 7 |a 10.1007/978-3-7091-1777-4  |2 doi 
040 |d GrThAP 
050 4 |a TA405-409.3 
050 4 |a QA808.2 
072 7 |a TG  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Vetyukov, Yury.  |e author. 
245 1 0 |a Nonlinear Mechanics of Thin-Walled Structures  |h [electronic resource] :  |b Asymptotics, Direct Approach and Numerical Analysis /  |c by Yury Vetyukov. 
264 1 |a Vienna :  |b Springer Vienna :  |b Imprint: Springer,  |c 2014. 
300 |a X, 272 p. 474 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Foundations of Engineering Mechanics,  |x 1612-1384 
505 0 |a Plane Bending of a Curved Rod -- Mechanics of Rods in Space.-Mechanics of Thin Elastic Shells -- Mechanics of Thin-Walled Rods of Open Profile -- Short Introduction toWolfram’s Mathematica. 
520 |a This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exact. The influence of pre-stresses on the torsional stiffness is shown to be crucial for buckling analysis. Novel finite element schemes for classical rod and shell structures are presented with a comprehensive discussion regarding the theoretical basis, computational aspects and implementation details. Analytical conclusions and closed-form solutions of particular problems are validated against numerical results. The majority of the simulations were performed in the Wolfram Mathematica environment, and the compact source code is provided as a substantial and integral part of the book. 
650 0 |a Engineering. 
650 0 |a Continuum mechanics. 
650 0 |a Structural mechanics. 
650 0 |a Mechatronics. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Structural Mechanics. 
650 2 4 |a Mechatronics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783709117767 
830 0 |a Foundations of Engineering Mechanics,  |x 1612-1384 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7091-1777-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)