Singular Sets of Minimizers for the Mumford-Shah Functional

Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2004. This book studies regularity properties of Mumford-Shah minimizers. The Mumford-Shah functional was introduced in the 1980s as a tool for automatic image segmentation, but its study gave rise to many interesting questions of analysi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: David, Guy (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2005.
Σειρά:Progress in Mathematics ; 233
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03222nam a22005415i 4500
001 978-3-7643-7302-3
003 DE-He213
005 20151030081034.0
007 cr nn 008mamaa
008 100301s2005 sz | s |||| 0|eng d
020 |a 9783764373023  |9 978-3-7643-7302-3 
024 7 |a 10.1007/b137039  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a David, Guy.  |e author. 
245 1 0 |a Singular Sets of Minimizers for the Mumford-Shah Functional  |h [electronic resource] /  |c by Guy David. 
246 3 |a Ferran Sunyer i Balaguer Award winning monograph 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2005. 
300 |a XIV, 581 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 233 
505 0 |a Presentation of the Mumford-Shah Functional -- Functions in the Sobolev Spaces W1,p -- Regularity Properties for Quasiminimizers -- Limits of Almost-Minimizers -- Pieces of C1 Curves for Almost-Minimizers -- Global Mumford-Shah Minimizers in the Plane -- Applications to Almost-Minimizers (n = 2) -- Quasi- and Almost-Minimizers in Higher Dimensions -- Boundary Regularity. 
520 |a Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2004. This book studies regularity properties of Mumford-Shah minimizers. The Mumford-Shah functional was introduced in the 1980s as a tool for automatic image segmentation, but its study gave rise to many interesting questions of analysis and geometric measure theory. The main object under scrutiny is a free boundary K where the minimizer may have jumps. The book presents an extensive description of the known regularity properties of the singular sets K, and the techniques to get them. Some time is spent on the C^1 regularity theorem (with an essentially unpublished proof in dimension 2), but a good part of the book is devoted to applications of A. Bonnet's monotonicity and blow-up techniques. In particular, global minimizers in the plane are studied in full detail. The book is largely self-contained and should be accessible to graduate students in analysis.The core of the book is composed of regularity results that were proved in the last ten years and which are presented in a more detailed and unified way. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764371821 
830 0 |a Progress in Mathematics ;  |v 233 
856 4 0 |u http://dx.doi.org/10.1007/b137039  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)