Multiscale Modeling in Epitaxial Growth Mini-Workshop at Mathematisches Forschungsinstitut Oberwolfach January 18–24, 2004 /

Epitaxy is a very active area of theoretical research since several years. It is experimentally well-explored and technologically relevant for thin film growth. Recently powerful numerical techniques in combination with a deep understanding of the physical and chemical phenomena during the growth pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Voigt, Axel (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2005.
Σειρά:ISNM International Series of Numerical Mathematics ; 149
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03661nam a22005055i 4500
001 978-3-7643-7343-6
003 DE-He213
005 20151204172611.0
007 cr nn 008mamaa
008 100301s2005 sz | s |||| 0|eng d
020 |a 9783764373436  |9 978-3-7643-7343-6 
024 7 |a 10.1007/b137679  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
245 1 0 |a Multiscale Modeling in Epitaxial Growth  |h [electronic resource] :  |b Mini-Workshop at Mathematisches Forschungsinstitut Oberwolfach January 18–24, 2004 /  |c edited by Axel Voigt. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2005. 
300 |a VIII, 240 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a ISNM International Series of Numerical Mathematics ;  |v 149 
505 0 |a Atomistic Models -- Lattice Gas Models and Kinetic Monte Carlo Simulations of Epitaxial Growth -- Cluster Diffusion and Island Formation on fcc(111) Metal Surfaces Studied by Atomic Scale Computer Simulations -- A Multiscale Study of the Epitaxial CVD of Si from Chlorosilanes -- Off-lattice Kinetic Monte Carlo Simulations of Strained Heteroepitaxial Growth -- Quasicontinuum Monte Carlo Simulation of Multilayer Surface Growth -- Step Flow Models -- to Step Dynamics and Step Instabilities -- A Finite Element Framework for Burton-Cabrera-Frank Equation -- Edge Diffusion in Phase-Field Models for Epitaxial Growth -- Discretisation and Numerical Tests of a Diffuse-Interface Model with Ehrlich-Schwoebel Barrier -- Islands in the Stream: Electromigration-Driven Shape Evolution with Crystal Anisotropy -- Simulation of Ostwald Ripening in Homoepitaxy -- Continuum Models -- Continuum Models for Surface Growth -- Configurational Continuum Modelling of Crystalline Surface Evolution -- On Level Set Formulations for Anisotropic Mean Curvature Flow and Surface Diffusion. 
520 |a Epitaxy is a very active area of theoretical research since several years. It is experimentally well-explored and technologically relevant for thin film growth. Recently powerful numerical techniques in combination with a deep understanding of the physical and chemical phenomena during the growth process offer the possibility to link atomistic effects at the surface to the macroscopic morphology of the film. The goal of this book is to summarize recent developments in this field, with emphasis on multiscale approaches and numerical methods. It covers atomistic, step-flow, and continuum models and provides a compact overview of these approaches. It also serves as an introduction into this highly active interdisciplinary field of research for applied mathematicians, theoretical physicists and computational materials scientists. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Voigt, Axel.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764372088 
830 0 |a ISNM International Series of Numerical Mathematics ;  |v 149 
856 4 0 |u http://dx.doi.org/10.1007/b137679  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)