Invariant Probabilities of Markov-Feller Operators and Their Supports

In this book invariant probabilities for a large class of discrete-time homogeneous Markov processes known as Feller processes are discussed. These Feller processes appear in the study of iterated function systems with probabilities, convolution operators, certain time series, etc. Rather than deali...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zaharopol, Radu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2005.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02772nam a22004815i 4500
001 978-3-7643-7344-3
003 DE-He213
005 20151204172222.0
007 cr nn 008mamaa
008 131217s2005 sz | s |||| 0|eng d
020 |a 9783764373443  |9 978-3-7643-7344-3 
024 7 |a 10.1007/b98076  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Zaharopol, Radu.  |e author. 
245 1 0 |a Invariant Probabilities of Markov-Feller Operators and Their Supports  |h [electronic resource] /  |c by Radu Zaharopol. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a XIII, 113 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a Introduction -- 1. Preliminaries on Markov-Feller Operators -- 2. The KBBY Decomposition -- 3. Unique Ergodicity -- 4. Equicontinuity -- Bibliography -- Index. 
520 |a In this book invariant probabilities for a large class of discrete-time homogeneous Markov processes known as Feller processes are discussed. These Feller processes appear in the study of iterated function systems with probabilities, convolution operators, certain time series, etc. Rather than dealing with the processes, the transition probabilities and the operators associated with these processes are studied. Main features: - an ergodic decomposition which is a "reference system" for dealing with ergodic measures - "formulas" for the supports of invariant probability measures, some of which can be used to obtain algorithms for the graphical display of these supports - helps to gain a better understanding of the structure of Markov-Feller operators, and, implicitly, of the discrete-time homogeneous Feller processes - special efforts to attract newcomers to the theory of Markov processes in general, and to the topics covered in particular - most of the results are new and deal with topics of intense research interest. 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764371340 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/b98076  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)