Isomorphisms between H1 Spaces

This book presents a thorough and self-contained presentation of H¹ and its known isomorphic invariants, such as the uniform approximation property, the dimension conjecture, and dichotomies for the complemented subspaces. The necessary background is developed from scratch. This includes a detailed...

Full description

Bibliographic Details
Main Author: Müller, Paul F.X (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Basel : Birkhäuser Basel, 2005.
Series:Monografie Matematyczne, Instytut Matematyczny Polskiej Akademii Nauk (IMPAN) ; 66
Subjects:
Online Access:Full Text via HEAL-Link
Description
Summary:This book presents a thorough and self-contained presentation of H¹ and its known isomorphic invariants, such as the uniform approximation property, the dimension conjecture, and dichotomies for the complemented subspaces. The necessary background is developed from scratch. This includes a detailed discussion of the Haar system, together with the operators that can be built from it (averaging projections, rearrangement operators, paraproducts, Calderon-Zygmund singular integrals). Complete proofs are given for the classical martingale inequalities of C. Fefferman, Burkholder, and Khinchine-Kahane, and for large deviation inequalities. Complex interpolation, analytic families of operators, and the Calderon product of Banach lattices are treated in the context of H^p spaces. Througout the book, special attention is given to the combinatorial methods developed in the field, particularly J. Bourgain's proof of the dimension conjecture, L. Carleson's biorthogonal system in H¹, T. Figiel's integral representation, W.B. Johnson's factorization of operators, B. Maurey's isomorphism, and P. Jones' proof of the uniform approximation property. An entire chapter is devoted to the study of combinatorics of colored dyadic intervals.
Physical Description:XIV, 458 p. online resource.
ISBN:9783764373450