Isomorphisms between H1 Spaces

This book presents a thorough and self-contained presentation of H¹ and its known isomorphic invariants, such as the uniform approximation property, the dimension conjecture, and dichotomies for the complemented subspaces. The necessary background is developed from scratch. This includes a detailed...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Müller, Paul F.X (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2005.
Σειρά:Monografie Matematyczne, Instytut Matematyczny Polskiej Akademii Nauk (IMPAN) ; 66
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03194nam a22005175i 4500
001 978-3-7643-7345-0
003 DE-He213
005 20151204173922.0
007 cr nn 008mamaa
008 100301s2005 sz | s |||| 0|eng d
020 |a 9783764373450  |9 978-3-7643-7345-0 
024 7 |a 10.1007/b137684  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Müller, Paul F.X.  |e author. 
245 1 0 |a Isomorphisms between H1 Spaces  |h [electronic resource] /  |c by Paul F.X. Müller. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2005. 
300 |a XIV, 458 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Monografie Matematyczne, Instytut Matematyczny Polskiej Akademii Nauk (IMPAN) ;  |v 66 
505 0 |a The Haar System: Basic Facts and Classical Results -- Projections, Isomorphisms and Interpolation -- Combinatorics of Colored Dyadic Intervals -- Martingale H1 Spaces -- Isomorphic Invariants for H1 -- Atomic H1 Spaces. 
520 |a This book presents a thorough and self-contained presentation of H¹ and its known isomorphic invariants, such as the uniform approximation property, the dimension conjecture, and dichotomies for the complemented subspaces. The necessary background is developed from scratch. This includes a detailed discussion of the Haar system, together with the operators that can be built from it (averaging projections, rearrangement operators, paraproducts, Calderon-Zygmund singular integrals). Complete proofs are given for the classical martingale inequalities of C. Fefferman, Burkholder, and Khinchine-Kahane, and for large deviation inequalities. Complex interpolation, analytic families of operators, and the Calderon product of Banach lattices are treated in the context of H^p spaces. Througout the book, special attention is given to the combinatorial methods developed in the field, particularly J. Bourgain's proof of the dimension conjecture, L. Carleson's biorthogonal system in H¹, T. Figiel's integral representation, W.B. Johnson's factorization of operators, B. Maurey's isomorphism, and P. Jones' proof of the uniform approximation property. An entire chapter is devoted to the study of combinatorics of colored dyadic intervals. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Harmonic analysis. 
650 0 |a Functional analysis. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764324315 
830 0 |a Monografie Matematyczne, Instytut Matematyczny Polskiej Akademii Nauk (IMPAN) ;  |v 66 
856 4 0 |u http://dx.doi.org/10.1007/b137684  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)