Nonlinear Smoothing and Multiresolution Analysis

This monograph presents a new theory for analysis, comparison and design of nonlinear smoothers, linking to established practices. Although a part of mathematical morphology, the special properties yield many simple, powerful and illuminating results leading to a novel nonlinear multiresolution anal...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Rohwer, Carl (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2005.
Σειρά:International Series of Numerical Mathematics ; 150
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03303nam a22005415i 4500
001 978-3-7643-7382-5
003 DE-He213
005 20151204164023.0
007 cr nn 008mamaa
008 100301s2005 sz | s |||| 0|eng d
020 |a 9783764373825  |9 978-3-7643-7382-5 
024 7 |a 10.1007/3-7643-7382-2  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Rohwer, Carl.  |e author. 
245 1 0 |a Nonlinear Smoothing and Multiresolution Analysis  |h [electronic resource] /  |c by Carl Rohwer. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2005. 
300 |a XIV, 137 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series of Numerical Mathematics ;  |v 150 
505 0 |a Operators on Sequences -- Basic Rank Selectors, Pulses and Impulses -- LULU-Smoothers, Signals and Ambiguity -- LULU-Intervals, Noise and Co-idempotence -- Smoothing and Approximation with Signals -- Variation Reduction and Shape Preservation -- Multiresolution Analysis of Sequences -- The Discrete Pulse Transform -- Fair Comparison with Linear Smoothers -- Interpretation and Future. 
520 |a This monograph presents a new theory for analysis, comparison and design of nonlinear smoothers, linking to established practices. Although a part of mathematical morphology, the special properties yield many simple, powerful and illuminating results leading to a novel nonlinear multiresolution analysis with pulses that may be as natural to vision as wavelet analysis is to acoustics. Similar to median transforms, they have the advantages of a supporting theory, computational simplicity, remarkable consistency, full trend preservation, and a Parceval-type identity. Although the perspective is new and unfamiliar to most, the reader can verify all the ideas and results with simple simulations on a computer at each stage. The framework developed turns out to be a part of mathematical morphology, but the additional specific structures and properties yield a heuristic understanding that is easy to absorb for practitioners in the fields like signal- and image processing. The book targets mathematicians, scientists and engineers with interest in concepts like trend, pulse, smoothness and resolution in sequences. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Fourier analysis. 
650 0 |a Operator theory. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764372293 
830 0 |a International Series of Numerical Mathematics ;  |v 150 
856 4 0 |u http://dx.doi.org/10.1007/3-7643-7382-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)