Perturbation Methods and Semilinear Elliptic Problems on Rn

The aim of this monograph is to discuss several elliptic problems on Rn with two main features: they are variational and perturbative in nature, and standard tools of nonlinear analysis based on compactness arguments cannot be used in general. For these problems, a more specific approach that takes...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ambrosetti, Antonio (Συγγραφέας), Malchiodi, Andrea (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2006.
Σειρά:Progress in Mathematics ; 240
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02915nam a22005055i 4500
001 978-3-7643-7396-2
003 DE-He213
005 20151204144938.0
007 cr nn 008mamaa
008 100301s2006 sz | s |||| 0|eng d
020 |a 9783764373962  |9 978-3-7643-7396-2 
024 7 |a 10.1007/3-7643-7396-2  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Ambrosetti, Antonio.  |e author. 
245 1 0 |a Perturbation Methods and Semilinear Elliptic Problems on Rn  |h [electronic resource] /  |c by Antonio Ambrosetti, Andrea Malchiodi. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2006. 
300 |a XII, 184 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 240 
505 0 |a Examples and Motivations -- Pertubation in Critical Point Theory -- Bifurcation from the Essential Spectrum -- Elliptic Problems on ?n with Subcritical Growth -- Elliptic Problems with Critical Exponent -- The Yamabe Problem -- Other Problems in Conformal Geometry -- Nonlinear Schrödinger Equations -- Singularly Perturbed Neumann Problems -- Concentration at Spheres for Radial Problems. 
520 |a The aim of this monograph is to discuss several elliptic problems on Rn with two main features: they are variational and perturbative in nature, and standard tools of nonlinear analysis based on compactness arguments cannot be used in general. For these problems, a more specific approach that takes advantage of such a perturbative setting seems to be the most appropriate. The first part of the book is devoted to these abstract tools, which provide a unified frame for several applications, often considered different in nature. Such applications are discussed in the second part, and include semilinear elliptic problems on Rn, bifurcation from the essential spectrum, the prescribed scalar curvature problem, nonlinear Schrödinger equations, and singularly perturbed elliptic problems in domains. These topics are presented in a systematic and unified way. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functional Analysis. 
700 1 |a Malchiodi, Andrea.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764373214 
830 0 |a Progress in Mathematics ;  |v 240 
856 4 0 |u http://dx.doi.org/10.1007/3-7643-7396-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)