Symplectic Geometry and Quantum Mechanics

This book is devoted to a rather complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a rigorous presentation of the basics of symplectic geometry and of its multiply-oriented extension. Further chapters concen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gosson, Maurice de (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2006.
Σειρά:Operator Theory: Advances and Applications ; 166
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03562nam a22006135i 4500
001 978-3-7643-7575-1
003 DE-He213
005 20151204180914.0
007 cr nn 008mamaa
008 100301s2006 sz | s |||| 0|eng d
020 |a 9783764375751  |9 978-3-7643-7575-1 
024 7 |a 10.1007/3-7643-7575-2  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Gosson, Maurice de.  |e author. 
245 1 0 |a Symplectic Geometry and Quantum Mechanics  |h [electronic resource] /  |c by Maurice de Gosson. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2006. 
300 |a XX, 368 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications ;  |v 166 
505 0 |a Symplectic Geometry -- Symplectic Spaces and Lagrangian Planes -- The Symplectic Group -- Multi-Oriented Symplectic Geometry -- Intersection Indices in Lag(n) and Sp(n) -- Heisenberg Group, Weyl Calculus, and Metaplectic Representation -- Lagrangian Manifolds and Quantization -- Heisenberg Group and Weyl Operators -- The Metaplectic Group -- Quantum Mechanics in Phase Space -- The Uncertainty Principle -- The Density Operator -- A Phase Space Weyl Calculus. 
520 |a This book is devoted to a rather complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a rigorous presentation of the basics of symplectic geometry and of its multiply-oriented extension. Further chapters concentrate on Lagrangian manifolds, Weyl operators and the Wigner-Moyal transform as well as on metaplectic groups and Maslov indices. Thus the keys for the mathematical description of quantum mechanics in phase space are discussed. They are followed by a rigorous geometrical treatment of the uncertainty principle. Then Hilbert-Schmidt and trace-class operators are exposed in order to treat density matrices. In the last chapter the Weyl pseudo-differential calculus is extended to phase space in order to derive a Schrödinger equation in phase space whose solutions are related to those of the usual Schrödinger equation by a wave-packet transform. The text is essentially self-contained and can be used as basis for graduate courses. Many topics are of genuine interest for pure mathematicians working in geometry and topology. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Operator theory. 
650 0 |a Partial differential equations. 
650 0 |a Physics. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Operator Theory. 
650 2 4 |a Quantum Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764375744 
830 0 |a Operator Theory: Advances and Applications ;  |v 166 
856 4 0 |u http://dx.doi.org/10.1007/3-7643-7575-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)