The Functional Calculus for Sectorial Operators

The present monograph deals with the functional calculus for unbounded operators in general and for sectorial operators in particular. Sectorial operators abound in the theory of evolution equations, especially those of parabolic type. They satisfy a certain resolvent condition that leads to a holom...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Haase, Markus (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2006.
Σειρά:Operator Theory: Advances and Applications ; 169
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03214nam a22004575i 4500
001 978-3-7643-7698-7
003 DE-He213
005 20150207022257.0
007 cr nn 008mamaa
008 100301s2006 sz | s |||| 0|eng d
020 |a 9783764376987  |9 978-3-7643-7698-7 
024 7 |a 10.1007/3-7643-7698-8  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Haase, Markus.  |e author. 
245 1 4 |a The Functional Calculus for Sectorial Operators  |h [electronic resource] /  |c by Markus Haase. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2006. 
300 |a XIV, 394 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications ;  |v 169 
505 0 |a Axiomatics for Functional Calculi -- The Functional Calculus for Sectorial Operators -- Fractional Powers and Semigroups -- Strip-type Operators and the Logarithm -- The Boundedness of the H?-Calculus -- Interpolation Spaces -- The Functional Calculus on Hilbert Spaces -- Differential Operators -- Mixed Topics. 
520 |a The present monograph deals with the functional calculus for unbounded operators in general and for sectorial operators in particular. Sectorial operators abound in the theory of evolution equations, especially those of parabolic type. They satisfy a certain resolvent condition that leads to a holomorphic functional calculus based on Cauchy-type integrals. Via an abstract extension procedure, this elementary functional calculus is then extended to a large class of (even meromorphic) functions. With this functional calculus at hand, the book elegantly covers holomorphic semigroups, fractional powers, and logarithms. Special attention is given to perturbation results and the connection with the theory of interpolation spaces. A chapter is devoted to the exciting interplay between numerical range conditions, similarity problems and functional calculus on Hilbert spaces. Two chapters describe applications, for example to elliptic operators, to numerical approximations of parabolic equations, and to the maximal regularity problem. This book is the first systematic account of a subject matter which lies in the intersection of operator theory, evolution equations, and harmonic analysis. It is an original and comprehensive exposition of the theory as a whole. Written in a clear style and optimally organised, it will prove useful for the advanced graduate as well as for the experienced researcher. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764376970 
830 0 |a Operator Theory: Advances and Applications ;  |v 169 
856 4 0 |u http://dx.doi.org/10.1007/3-7643-7698-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)