Extremum Problems for Eigenvalues of Elliptic Operators

Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenval...

Full description

Bibliographic Details
Main Author: Henrot, Antoine (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Basel : Birkhäuser Basel, 2006.
Series:Frontiers in Mathematics,
Subjects:
Online Access:Full Text via HEAL-Link
Description
Summary:Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. We also consider the case of functions of eigenvalues. We investigate similar questions for other elliptic operators, such as the Schrödinger operator, non homogeneous membranes, or the bi-Laplacian, and we look at optimal composites and optimal insulation problems in terms of eigenvalues. Providing also a self-contained presentation of classical isoperimetric inequalities for eigenvalues and 30 open problems, this book will be useful for pure and applied mathematicians, particularly those interested in partial differential equations, the calculus of variations, differential geometry, or spectral theory.
Physical Description:X, 202 p. 16 illus. online resource.
ISBN:9783764377069
ISSN:1660-8046