Extremum Problems for Eigenvalues of Elliptic Operators

Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenval...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Henrot, Antoine (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2006.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02892nam a22004575i 4500
001 978-3-7643-7706-9
003 DE-He213
005 20131219125827.0
007 cr nn 008mamaa
008 100301s2006 sz | s |||| 0|eng d
020 |a 9783764377069  |9 978-3-7643-7706-9 
024 7 |a 10.1007/3-7643-7706-2  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Henrot, Antoine.  |e author. 
245 1 0 |a Extremum Problems for Eigenvalues of Elliptic Operators  |h [electronic resource] /  |c by Antoine Henrot. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2006. 
300 |a X, 202 p. 16 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a Eigenvalues of elliptic operators -- Tools -- The first eigenvalue of the Laplacian-Dirichlet -- The second eigenvalue of the Laplacian-Dirichlet -- The other Dirichlet eigenvalues -- Functions of Dirichlet eigenvalues -- Other boundary conditions for the Laplacian -- Eigenvalues of Schrödinger operators -- Non-homogeneous strings and membranes -- Optimal conductivity -- The bi-Laplacian operator. 
520 |a Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. We also consider the case of functions of eigenvalues. We investigate similar questions for other elliptic operators, such as the Schrödinger operator, non homogeneous membranes, or the bi-Laplacian, and we look at optimal composites and optimal insulation problems in terms of eigenvalues. Providing also a self-contained presentation of classical isoperimetric inequalities for eigenvalues and 30 open problems, this book will be useful for pure and applied mathematicians, particularly those interested in partial differential equations, the calculus of variations, differential geometry, or spectral theory. 
650 0 |a Mathematics. 
650 0 |a Operator theory. 
650 0 |a Potential theory (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Potential Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764377052 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/3-7643-7706-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)